forked from seungeunrho/minimalRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacer.py
149 lines (120 loc) · 4.67 KB
/
acer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gym
import random
import collections
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
# Characteristics
# 1. Discrete action space, single thread version.
# 2. Does not support trust-region updates.
#Hyperparameters
learning_rate = 0.0002
gamma = 0.98
buffer_limit = 6000
rollout_len = 10
batch_size = 4 # Indicates 4 sequences per mini-batch (4*rollout_len = 40 samples total)
c = 1.0 # For truncating importance sampling ratio
class ReplayBuffer():
def __init__(self):
self.buffer = collections.deque(maxlen=buffer_limit)
def put(self, seq_data):
self.buffer.append(seq_data)
def sample(self, on_policy=False):
if on_policy:
mini_batch = [self.buffer[-1]]
else:
mini_batch = random.sample(self.buffer, batch_size)
s_lst, a_lst, r_lst, prob_lst, done_lst, is_first_lst = [], [], [], [], [], []
for seq in mini_batch:
is_first = True # Flag for indicating whether the transition is the first item from a sequence
for transition in seq:
s, a, r, prob, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append(r)
prob_lst.append(prob)
done_mask = 0.0 if done else 1.0
done_lst.append(done_mask)
is_first_lst.append(is_first)
is_first = False
s,a,r,prob,done_mask,is_first = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
r_lst, torch.tensor(prob_lst, dtype=torch.float), done_lst, \
is_first_lst
return s,a,r,prob,done_mask,is_first
def size(self):
return len(self.buffer)
class ActorCritic(nn.Module):
def __init__(self):
super(ActorCritic, self).__init__()
self.fc1 = nn.Linear(4,256)
self.fc_pi = nn.Linear(256,2)
self.fc_q = nn.Linear(256,2)
def pi(self, x, softmax_dim = 0):
x = F.relu(self.fc1(x))
x = self.fc_pi(x)
pi = F.softmax(x, dim=softmax_dim)
return pi
def q(self, x):
x = F.relu(self.fc1(x))
q = self.fc_q(x)
return q
def train(model, optimizer, memory, on_policy=False):
s,a,r,prob,done_mask,is_first = memory.sample(on_policy)
q = model.q(s)
q_a = q.gather(1,a)
pi = model.pi(s, softmax_dim = 1)
pi_a = pi.gather(1,a)
v = (q * pi).sum(1).unsqueeze(1).detach()
rho = pi.detach()/prob
rho_a = rho.gather(1,a)
rho_bar = rho_a.clamp(max=c)
correction_coeff = (1-c/rho).clamp(min=0)
q_ret = v[-1] * done_mask[-1]
q_ret_lst = []
for i in reversed(range(len(r))):
q_ret = r[i] + gamma * q_ret
q_ret_lst.append(q_ret.item())
q_ret = rho_bar[i] * (q_ret - q_a[i]) + v[i]
if is_first[i] and i!=0:
q_ret = v[i-1] * done_mask[i-1] # When a new sequence begins, q_ret is initialized
q_ret_lst.reverse()
q_ret = torch.tensor(q_ret_lst, dtype=torch.float).unsqueeze(1)
loss1 = -rho_bar * torch.log(pi_a) * (q_ret - v)
loss2 = -correction_coeff * pi.detach() * torch.log(pi) * (q.detach()-v) # bias correction term
loss = loss1 + loss2.sum(1) + F.smooth_l1_loss(q_a, q_ret)
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
def main():
env = gym.make('CartPole-v1')
memory = ReplayBuffer()
model = ActorCritic()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
score = 0.0
print_interval = 20
for n_epi in range(10000):
s = env.reset()
done = False
while not done:
seq_data = []
for t in range(rollout_len):
prob = model.pi(torch.from_numpy(s).float())
a = Categorical(prob).sample().item()
s_prime, r, done, info = env.step(a)
seq_data.append((s, a, r/100.0, prob.detach().numpy(), done))
score +=r
s = s_prime
if done:
break
memory.put(seq_data)
if memory.size()>500:
train(model, optimizer, memory, on_policy=True)
train(model, optimizer, memory)
if n_epi%print_interval==0 and n_epi!=0:
print("# of episode :{}, avg score : {:.1f}, buffer size : {}".format(n_epi, score/print_interval, memory.size()))
score = 0.0
env.close()
if __name__ == '__main__':
main()