-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathproj_velo2cam_kitti_odom.py
executable file
·98 lines (77 loc) · 3.31 KB
/
proj_velo2cam_kitti_odom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from multiprocessing.resource_sharer import stop
import sys
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import os
import copy
import imageio as im
sequence = "00"
show_overlay = False
cur_dir = os.path.abspath(os.path.dirname(__file__))
image_path = os.path.join(cur_dir, "../", sequence, "image_2")
velodyne_path = os.path.join("../", sequence, "velodyne")
calib_path = os.path.join(cur_dir, "..", sequence)
save_path = os.path.join("../depth_png", sequence)
filelist = [os.path.splitext(filename)[0] for filename in os.listdir(os.path.join(cur_dir, "..", sequence, "velodyne"))]
filelist.sort()
print("Generating " + str(len(filelist)) + " overlay images!")
image_counter = 0
num_images = len(filelist)
for name in filelist:
img = os.path.join(image_path, name + ".png")
binary = os.path.join(velodyne_path, name + ".bin")
with open(os.path.join(calib_path, "calib.txt"),'r') as f:
calib = f.readlines()
# P2 (3 x 4) for left eye
P2 = np.matrix([float(x) for x in calib[2].strip('\n').split(' ')[1:]]).reshape(3,4)
# Odometry: No rect needed
# R0_rect = np.matrix([float(x) for x in calib[4].strip('\n').split(' ')[1:]]).reshape(3,3)
# Add a 1 in bottom-right, reshape to 4 x 4
# R0_rect = np.insert(R0_rect,3,values=[0,0,0],axis=0)
# R0_rect = np.insert(R0_rect,3,values=[0,0,0,1],axis=1)
# Odometry: index 4 needed instead of 5
Tr_velo_to_cam = np.matrix([float(x) for x in calib[4].strip('\n').split(' ')[1:]]).reshape(3,4)
Tr_velo_to_cam = np.insert(Tr_velo_to_cam,3,values=[0,0,0,1],axis=0)
# read raw data from binary
scan = np.fromfile(binary, dtype=np.float32).reshape((-1, 4))
points = scan[:, 0:3] # lidar xyz (front, left, up)
# TODO: use fov filter?
velo = np.insert(points, 3, 1, axis=1).T
velo = np.delete(velo, np.where(velo[0,:]<0), axis=1)
# Odometry: no rect needed
# cam = P2 * R0_rect * Tr_velo_to_cam * velo
cam = P2 * Tr_velo_to_cam * velo
cam = np.delete(cam, np.where(cam[2,:]<0)[1], axis=1)
# get u,v,z
cam[:2] /= cam[2,:]
# do projection staff
png = mpimg.imread(img)
IMG_H,IMG_W,_ = png.shape
# restrict canvas in range
# filter point out of canvas
u,v,z = cam
u_out = np.logical_or(u<0, u>IMG_W)
v_out = np.logical_or(v<0, v>IMG_H)
outlier = np.logical_or(u_out, v_out)
cam = np.delete(cam, np.where(outlier),axis=1)
# generate color map from depth
u,v,z = cam
if show_overlay:
plt.figure(1, figsize=(12,5), dpi=96, tight_layout=True)
plt.axis([0,IMG_W,IMG_H,0])
plt.imshow(png)
plt.scatter([u], [v], c=[z], cmap='rainbow_r', alpha=0.5, s=2)
# plt.title(name)
plt.axis("off")
plt.show()
image_data = np.array(cam)
image_matrix = np.ones((IMG_H, IMG_W), dtype=np.uint16) * 0
index=0
for i in image_data[1,:]:
image_matrix[int(i), int(image_data[0, index])] = image_data[2, index] * (256.)
# print(image_matrix[int(i), int(image_data[0, index])])
index = index+1
im.imwrite(os.path.join(save_path, name + ".png"), im=(image_matrix))
print("Finished ", image_counter, " out of ", num_images)
image_counter += 1