-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSDD_BEC_H2.cpp
382 lines (279 loc) · 15 KB
/
SDD_BEC_H2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#include<bits/stdc++.h>
using namespace std;
// Soft Decision Decoding For BEC Channel (for 3000 x 5000 H - matrix)
// Degree of CN is 5
// CN container
struct CN
{
float v[5][2]={{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}}; // In first column I'll store which number of VN is connected (from 1 to 5000) and in second column the values of that VN in message passing from VN to CN
}arr_CN[3000];
// Degree of VN is 3
// VN container
struct VN
{
float c[3][2]={{-1,-1},{-1,-1},{-1,-1}}; // In first column I'll store which number of CN is connected (from 1 to 3000) and in second column the values of that CN in message passing from CN to VN
float value; // Store the conditional probability of transmitted signal after adding the noise that the value of corresponding VN is 1
float decision; // At last it makes decision for it's final value
}arr_VN[5000];
int main()
{
int N=5000,U=3000,i,j,count,c1,c2,c3,v1,v2,v3,v4,v5,flag,stop,terminate,Nsim=1000,Ksim,l;
int Ncorr[101]={0},Nerr[101]={0};
float p[101],r,k,alpha,bita,VN_is_1,VN_is_0,VN_decision_1,VN_decision_0,arr[3]; // Crossover Probability
p[0]=0;
for(i=1;i<101;i++)
{
p[i]=p[i-1]+0.01;
}
int **H = new int *[U]; // Read H matrix from .txt file
for (int i = 0; i < U; i++)
H[i] = new int[N];
ifstream fin;
fin.open("Hmatrix2.txt");
if (!fin)
{
cout << "Cannot open the file" << endl;
exit(0);
}
int inRow = 0, inCol = 0;
char data;
while (!fin.eof()) // Here I want to fill the H matrix with values given in text file,
//keeping in mind the size of each row and column of H
{
fin >> data;
if (data != ',')
{
if (inCol == N)
{
inCol = 0;
inRow++;
}
H[inRow][inCol] = data - 48;
inCol++;
if(inRow == U-1 && inCol == N )
break;
}
}
fin.close();
// Connection of CNs with VNs
for(i=0;i<U;i++)
{
count=0;
for(j=0;j<N;j++)
{
if(H[i][j]==1)
{
arr_CN[i].v[count][0]=j+1;
++count;
}
}
}
// Connection of VNs with CNs
for(j=0;j<N;j++)
{
count=0;
for(i=0;i<U;i++)
{
if(H[i][j]==1)
{
arr_VN[j].c[count][0]=i+1;
++count;
}
}
}
// Tanner Graph Decoding With Monte Carlo Simulations
srand (time(NULL));
for(l=0;l<101;l++) // Outer loop for crossover probability
{
for(Ksim=1;Ksim<=Nsim;Ksim++) // Loop for Monte - Carlo simulations
{
int tr[N]={0}; // Transmitted Signal
int noise[N]={0}; // Noise ( or received signal contains bits)
// Loading VNs with conditional probabilities that VN is 1 given received bit
for(i=0;i<N;i++)
{
r=((float) rand() / (RAND_MAX + 1)); // Generation of a random number between 0 to 1
if(r>p[l])
noise[i]=tr[i];
else
noise[i]=-1; // If r <= p then, the received bit will be flipped
// Conditional Probability that VN i is 1 given received bit
if(noise[i]==0) // If received bit is 0 then it is 0
{
arr_VN[i].value=0;
for(j=0;j<3;j++)
arr_VN[i].c[j][1]=0;
}
else // If received bit is erasure then it is 0.5
{
arr_VN[i].value=0.5;
for(j=0;j<3;j++)
arr_VN[i].c[j][1]=0.5;
}
}
// Tanner Graph decoding
terminate=0;
flag=1;
stop=0;
// terminate is used for 100 iterations breaking codition
while(terminate<100 && flag!=0 && stop!=U)
{
// VN sends massege to CN (first iteration and next iterations)
for(i=0;i<N;i++)
{
c1=arr_VN[i].c[0][0];
c2=arr_VN[i].c[1][0];
c3=arr_VN[i].c[2][0];
for(j=0;j<5;j++)
{
if(arr_CN[c1-1].v[j][0]==i+1)
arr_CN[c1-1].v[j][1]=arr_VN[i].c[0][1];
}
for(j=0;j<5;j++)
{
if(arr_CN[c2-1].v[j][0]==i+1)
arr_CN[c2-1].v[j][1]=arr_VN[i].c[1][1];
}
for(j=0;j<5;j++)
{
if(arr_CN[c3-1].v[j][0]==i+1)
arr_CN[c3-1].v[j][1]=arr_VN[i].c[2][1];
}
}
// CN sends VN
flag=stop=0;
for(i=0;i<U;i++)
{
v1=arr_CN[i].v[0][0];
v2=arr_CN[i].v[1][0];
v3=arr_CN[i].v[2][0];
v4=arr_CN[i].v[3][0];
v5=arr_CN[i].v[4][0];
count=0;
for(j=0;j<5;j++)
{
if(arr_CN[i].v[j][1]==0.5) // Count the number of erasures (or p==0.5) out of 5
++count;
}
if(count==1) // If there is only one VN has value erasure then it's value will change but if there are two or more erasures then their values will not change and so we can skip that case
{
if(arr_CN[i].v[0][1]==0.5)
{
for(j=0;j<3;j++)
{
if(arr_VN[v1-1].c[j][0]==i+1)
{
VN_is_1=(arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]);
VN_is_0=((1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]);
bita=1/(VN_is_1 + VN_is_0);
arr_VN[v1-1].c[j][1]=bita*VN_is_1;
break;
}
}
}
if(arr_CN[i].v[1][1]==0.5)
{
for(j=0;j<3;j++)
{
if(arr_VN[v2-1].c[j][0]==i+1)
{
VN_is_1=(arr_CN[i].v[0][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[0][1]*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]);
VN_is_0=((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]);
bita=1/(VN_is_1 + VN_is_0);
arr_VN[v2-1].c[j][1]=bita*VN_is_1;
break;
}
}
}
if(arr_CN[i].v[2][1]==0.5)
{
for(j=0;j<3;j++)
{
if(arr_VN[v3-1].c[j][0]==i+1)
{
VN_is_1=(arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]);
VN_is_0=((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*(1-arr_CN[i].v[3][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*(1-arr_CN[i].v[3][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*arr_CN[i].v[3][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*arr_CN[i].v[3][1]*arr_CN[i].v[4][1]);
bita=1/(VN_is_1 + VN_is_0);
arr_VN[v3-1].c[j][1]=bita*VN_is_1;
break;
}
}
}
if(arr_CN[i].v[3][1]==0.5)
{
for(j=0;j<3;j++)
{
if(arr_VN[v4-1].c[j][0]==i+1)
{
VN_is_1=(arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[4][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[4][1]) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*arr_CN[i].v[4][1]);
VN_is_0=((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[4][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[4][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*arr_CN[i].v[4][1]);
bita=1/(VN_is_1 + VN_is_0);
arr_VN[v4-1].c[j][1]=bita*VN_is_1;
break;
}
}
}
if(arr_CN[i].v[4][1]==0.5)
{
for(j=0;j<3;j++)
{
if(arr_VN[v5-1].c[j][0]==i+1)
{
VN_is_1=(arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]);
VN_is_0=((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*(1-arr_CN[i].v[3][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])) + (arr_CN[i].v[0][1]*(1-arr_CN[i].v[1][1])*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]) + ((1-arr_CN[i].v[0][1])*(1-arr_CN[i].v[1][1])*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*(1-arr_CN[i].v[2][1])*arr_CN[i].v[3][1]) + ((1-arr_CN[i].v[0][1])*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*(1-arr_CN[i].v[3][1])) + (arr_CN[i].v[0][1]*arr_CN[i].v[1][1]*arr_CN[i].v[2][1]*arr_CN[i].v[3][1]);
bita=1/(VN_is_1 + VN_is_0);
arr_VN[v5-1].c[j][1]=bita*VN_is_1;
break;
}
}
}
flag=1;
// Here, if any VN out of all which are erasures don't change it's value after t th iteration then, flag will be 0 and this is the second condition for breaking the Tanner Graph loop
}
else if(count==0)
++stop;
// If out of 5 VNs connected with a single CN there is not any erasure then, value of stop will increase and if stop's value reach to U (means equals to number of CNs), it means that in all VNs there is not any erasure and this is the third breaking condition
}
// Computing the conditional probability that VN i is 1
for(i=0;i<N;i++)
{
for(j=0;j<3;j++)
arr[j]=arr_VN[i].c[j][1];
for(j=0;j<3;j++)
{
VN_decision_1=arr_VN[i].value*arr[(j+1)%3]*arr[(j+2)%3];
VN_decision_0=(1-arr_VN[i].value)*(1-arr[(j+1)%3])*(1-arr[(j+2)%3]);
alpha=1/(VN_decision_1 + VN_decision_0);
arr_VN[i].c[j][1]=alpha*VN_decision_1;
}
}
++terminate;
}
// Computing likelihood ratios or determine VN i is 1 or 0
flag=1;
for(i=0;i<N;i++)
{
count=k=0;
arr_VN[i].decision=(arr_VN[i].value/(1-arr_VN[i].value))*(arr_VN[i].c[0][1]/(1-arr_VN[i].c[0][1]))*(arr_VN[i].c[1][1]/(1-arr_VN[i].c[1][1]))*(arr_VN[i].c[2][1]/(1-arr_VN[i].c[2][1]));
if(arr_VN[i].decision>=1)
arr_VN[i].decision=1;
else
arr_VN[i].decision=0;
// Determine after decoding signal has still any error or not
if(arr_VN[i].decision!=tr[i])
{
flag=0;
break;
}
}
// Increase Nerr if there is any error otherwise that is successfull decoding
if(flag==1)
++Ncorr[l];
else
++Nerr[l];
}
}
for(i=0;i<101;i++)
//cout<<"p = "<<p[i]<<" "<<"Ncorr = "<<Ncorr[i]<<" Nerr = "<<Nerr[i]<<" Ncorr/Nsim = "<<(Ncorr[i]*1.0)/Nsim<<endl<<endl;
cout<<(Ncorr[i]*1.0)/Nsim<<" ";
}