-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathExGAN.py
219 lines (188 loc) · 7.4 KB
/
ExGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from tensorboardX import SummaryWriter
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from skimage.transform import resize
import torch.optim as optim
from torch import LongTensor, FloatTensor
from scipy.stats import skewnorm, genpareto
from torchvision.utils import save_image
import sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--c", type=float, default=0.75)
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument('--k', type=int, default=10)
opt = parser.parse_args()
cudanum = opt.gpu_id
class NWSDataset(Dataset):
"""
NWS Dataset
"""
def __init__(
self, fake='DistShift/fake10.pt', c=0.75, k=10, n=2557
):
val = int((c ** k) * n)
self.real = torch.load('data/real.pt').cuda(cudanum)
self.fake = torch.load(fake).cuda(cudanum)
self.realdata = torch.cat([self.real[:val], self.fake[:n - val]], 0)
indices = torch.randperm(n)
self.realdata = self.realdata[indices]
def __len__(self):
return self.realdata.shape[0]
def __getitem__(self, item):
img = self.realdata[item]
return img, img.sum() / 4096
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
def convTBNReLU(in_channels, out_channels, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
nn.ConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
),
nn.InstanceNorm2d(out_channels),
nn.LeakyReLU(0.2, True),
)
def convBNReLU(in_channels, out_channels, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
),
nn.InstanceNorm2d(out_channels),
nn.LeakyReLU(0.2, True),
)
class Generator(nn.Module):
def __init__(self, in_channels, out_channels):
super(Generator, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.block1 = convTBNReLU(in_channels + 1, 512, 4, 1, 0)
self.block2 = convTBNReLU(512, 256)
self.block3 = convTBNReLU(256, 128)
self.block4 = convTBNReLU(128, 64)
self.block5 = nn.ConvTranspose2d(64, out_channels, 4, 2, 1)
def forward(self, latent, continuous_code):
inp = torch.cat((latent, continuous_code), 1)
out = self.block1(inp)
out = self.block2(out)
out = self.block3(out)
out = self.block4(out)
return torch.tanh(self.block5(out))
class Discriminator(nn.Module):
def __init__(self, in_channels):
super(Discriminator, self).__init__()
self.in_channels = in_channels
self.block1 = convBNReLU(self.in_channels, 64)
self.block2 = convBNReLU(64, 128)
self.block3 = convBNReLU(128, 256)
self.block4 = convBNReLU(256, 512)
self.block5 = nn.Conv2d(512, 64, 4, 1, 0)
self.source = nn.Linear(64 + 1, 1)
def forward(self, inp, extreme):
sums = inp.sum(dim=(1, 2, 3)) / 4096
diff = torch.abs(extreme.view(-1, 1) - sums.view(-1, 1)) / torch.abs(extreme.view(-1, 1))
out = self.block1(inp)
out = self.block2(out)
out = self.block3(out)
out = self.block4(out)
out = self.block5(out)
size = out.shape[0]
out = out.view(size, -1)
source = torch.sigmoid(self.source(torch.cat([out, diff], 1)))
return source
latentdim = 20
criterionSource = nn.BCELoss()
G = Generator(in_channels=latentdim, out_channels=1).cuda(cudanum)
D = Discriminator(in_channels=1).cuda(cudanum)
G.apply(weights_init_normal)
D.apply(weights_init_normal)
genpareto_params = (1.33, 0, 0.0075761900937239765)
threshold = -0.946046018600464
rv = genpareto(*genpareto_params)
c = opt.c
k = opt.k
def sample_genpareto(size):
probs = torch.rand(size) * 0.95
return FloatTensor(rv.ppf(probs)) + threshold
def sample_cont_code(batch_size):
return Variable(sample_genpareto((batch_size, 1, 1, 1))).cuda(cudanum)
optimizerG = optim.Adam(G.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerD = optim.Adam(D.parameters(), lr=0.0001, betas=(0.5, 0.999))
static_code = sample_cont_code(81)
def sample_image(batches_done):
static_z = Variable(FloatTensor(torch.randn((81, latentdim, 1, 1)))).cuda(cudanum)
static_sample = G(static_z, static_code).detach().cpu()
static_sample = (static_sample + 1) / 2.0
save_image(static_sample, DIRNAME + "%d.png" % batches_done, nrow=9)
DIRNAME = 'ExGAN/'
os.makedirs(DIRNAME, exist_ok=True)
board = SummaryWriter(log_dir=DIRNAME)
step = 0
n = 2557
fakename = 'DistShift/fake10.pt'
dataloader = DataLoader(NWSDataset(fake=fakename, c=c, k=k, n=n), batch_size=256, shuffle=True)
for epoch in range(0, 1000):
print(epoch)
for images, labels in dataloader:
noise = 1e-5 * max(1 - (epoch / 1000.0), 0)
step += 1
batch_size = images.shape[0]
trueTensor = 0.7 + 0.5 * torch.rand(batch_size)
falseTensor = 0.3 * torch.rand(batch_size)
probFlip = torch.rand(batch_size) < 0.05
probFlip = probFlip.float()
trueTensor, falseTensor = (
probFlip * falseTensor + (1 - probFlip) * trueTensor,
probFlip * trueTensor + (1 - probFlip) * falseTensor,
)
trueTensor = trueTensor.view(-1, 1).cuda(cudanum)
falseTensor = falseTensor.view(-1, 1).cuda(cudanum)
images, labels = images.cuda(cudanum), labels.view(-1, 1).cuda(cudanum)
realSource = D(images, labels)
realLoss = criterionSource(realSource, trueTensor.expand_as(realSource))
latent = Variable(torch.randn(batch_size, latentdim, 1, 1)).cuda(cudanum)
code = sample_cont_code(batch_size)
fakeGen = G(latent, code)
fakeGenSource = D(fakeGen.detach(), code)
fakeGenLoss = criterionSource(fakeGenSource, falseTensor.expand_as(fakeGenSource))
lossD = realLoss + fakeGenLoss
optimizerD.zero_grad()
lossD.backward()
torch.nn.utils.clip_grad_norm_(D.parameters(), 20)
optimizerD.step()
fakeGenSource = D(fakeGen, code)
fakeLabels = fakeGen.sum(dim=(1, 2, 3)) / 4096
rpd = torch.mean(torch.abs((fakeLabels - code.view(batch_size)) / code.view(batch_size)))
lossG = criterionSource(fakeGenSource, trueTensor.expand_as(fakeGenSource)) + rpd
optimizerG.zero_grad()
lossG.backward()
torch.nn.utils.clip_grad_norm_(G.parameters(), 20)
optimizerG.step()
board.add_scalar('realLoss', realLoss.item(), step)
board.add_scalar('fakeGenLoss', fakeGenLoss.item(), step)
board.add_scalar('fakeContLoss', rpd.item(), step)
board.add_scalar('lossD', lossD.item(), step)
board.add_scalar('lossG', lossG.item(), step)
if (epoch + 1) % 50 == 0:
torch.save(G.state_dict(), DIRNAME + 'G' + str(epoch) + ".pt")
torch.save(D.state_dict(), DIRNAME + 'D' + str(epoch) + ".pt")
if (epoch + 1) % 10 == 0:
with torch.no_grad():
G.eval()
sample_image(epoch)
G.train()