forked from OpenGVLab/InternVL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
1012 lines (951 loc) · 63.6 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
import os
import sys
import warnings
from subprocess import call
import torch
from torch.utils.data import default_collate
from torchvision.datasets import (CIFAR10, CIFAR100, DTD, GTSRB, MNIST, PCAM,
STL10, SUN397, CocoCaptions, Country211,
EuroSAT, FGVCAircraft, Flowers102, Food101,
ImageFolder, ImageNet, OxfordIIITPet,
RenderedSST2, StanfordCars)
from . import caltech101, flickr, imagenetv2, objectnet, voc2007
from .birdsnap import BirdsnapV2
from .tools import pre_caption
def _load_classnames_and_classification_templates(dataset_name, current_folder, language):
with open(os.path.join(current_folder, language + '_classnames.json'), 'r') as f:
classnames = json.load(f)
# Zero-shot classification templates, collected from a bunch of sources
# - CLIP paper (https://github.com/openai/CLIP/blob/main/data/prompts.md)
# - Lit Paper (https://arxiv.org/pdf/2111.07991.pdf)
# - SLIP paper (https://github.com/facebookresearch/SLIP/blob/main/templates.json)
# Some are fixed mnaually
with open(os.path.join(current_folder, language + '_zeroshot_classification_templates.json'), 'r') as f:
zeroshot_classification_templates = json.load(f)
# default template to use when the dataset name does not belong to `zeroshot_classification_templates`
DEFAULT_ZEROSHOT_CLASSIFICATION_TEMPLATES = zeroshot_classification_templates['imagenet1k']
if dataset_name.startswith('tfds/') or dataset_name.startswith('vtab/') or dataset_name.startswith('wds/'):
name = dataset_name.split('/')[-1]
else:
name = dataset_name
templates = zeroshot_classification_templates.get(name, DEFAULT_ZEROSHOT_CLASSIFICATION_TEMPLATES)
return classnames, templates
def build_dataset(dataset_name, root='root', transform=None, split='test', download=True, annotation_file=None,
language='en', task='zeroshot_classification', cupl=False, wds_cache_dir=None, **kwargs):
"""
Main function to use in order to build a dataset instance,
dataset_name: str
name of the dataset
root: str
root folder where the dataset is downloaded and stored. can be shared among datasets.
transform: torchvision transform applied to images
split: str
split to use, depending on the dataset can have different options.
In general, `train` and `test` are available.
For specific splits, please look at the corresponding dataset.
annotation_file: str or None
only for datasets with captions (used for retrieval) such as COCO
and Flickr.
"""
current_folder = os.path.dirname(__file__)
if task in ('zeroshot_classification', 'linear_probe'): # Only load templates and classnames if we have to
classnames, templates = _load_classnames_and_classification_templates(dataset_name, current_folder, language)
else:
classnames, templates = None, None
with open(os.path.join(current_folder, 'cupl_prompts.json'), 'r') as f:
cupl_prompts = json.load(f)
templates_cupl = None
train = (split == 'train')
if dataset_name == 'cifar10':
ds = CIFAR10(root=root, train=train, transform=transform, download=download, **kwargs)
elif dataset_name == 'cifar100':
ds = CIFAR100(root=root, train=train, transform=transform, download=download, **kwargs)
elif dataset_name == 'imagenet1k':
if not os.path.exists(root):
os.makedirs(root, exist_ok=True)
call(
f'wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_devkit_t12.tar.gz --output-document={root}/ILSVRC2012_devkit_t12.tar.gz',
shell=True)
call(
f'wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar --output-document={root}/ILSVRC2012_img_val.tar',
shell=True)
ds = ImageNet(root=root, split='train' if train else 'val', transform=transform, **kwargs)
# use classnames from OpenAI
ds.classes = classnames['imagenet1k']
templates_cupl = cupl_prompts['imagenet1k']
elif dataset_name == 'imagenet1k-unverified':
split = 'train' if train else 'val'
ds = ImageFolder(root=os.path.join(root, split), transform=transform, **kwargs)
# use classnames from OpenAI
ds.classes = classnames['imagenet1k']
templates_cupl = cupl_prompts['imagenet1k']
elif dataset_name == 'imagenetv2':
assert split == 'test', f'Only test split available for {dataset_name}'
os.makedirs(root, exist_ok=True)
ds = imagenetv2.ImageNetV2Dataset(variant='matched-frequency', transform=transform, location=root)
ds.classes = classnames['imagenet1k']
templates_cupl = cupl_prompts['imagenet1k']
elif dataset_name == 'imagenet_sketch':
assert split == 'test', f'Only test split available for {dataset_name}'
# Downloadable from https://drive.google.com/open?id=1Mj0i5HBthqH1p_yeXzsg22gZduvgoNeA
if not os.path.exists(root):
# Automatic download
print('Downloading imagenet_sketch...')
if not has_gdown():
print('GDown is needed to download the dataset. Please install it via `pip install gdown`')
sys.exit(1)
# Download ImageNet-Sketch.zip
call('gdown --id 1Mj0i5HBthqH1p_yeXzsg22gZduvgoNeA', shell=True)
assert os.path.exists('ImageNet-Sketch.zip')
# Unzip and move to `root`
call('unzip ImageNet-Sketch.zip', shell=True)
call(f'mv sketch {root}', shell=True)
ds = ImageFolder(root=root, transform=transform, **kwargs)
ds.classes = classnames['imagenet1k']
templates_cupl = cupl_prompts['imagenet1k']
elif dataset_name == 'imagenet-a':
assert split == 'test', f'Only test split available for {dataset_name}'
# Downloadable from https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar
if not os.path.exists(root):
print('Downloading imagenet-a...')
call('wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar', shell=True)
# Untar and move to `root`
call('tar xvf imagenet-a.tar', shell=True)
call(f'mv imagenet-a {root}', shell=True)
ds = ImageFolder(root=root, transform=transform, **kwargs)
ds.classes = classnames['imagenet1k']
imagenet_a_wnids = ['n01498041', 'n01531178', 'n01534433', 'n01558993', 'n01580077', 'n01614925', 'n01616318',
'n01631663', 'n01641577', 'n01669191', 'n01677366', 'n01687978', 'n01694178', 'n01698640',
'n01735189', 'n01770081', 'n01770393', 'n01774750', 'n01784675', 'n01819313', 'n01820546',
'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01882714', 'n01910747', 'n01914609',
'n01924916', 'n01944390', 'n01985128', 'n01986214', 'n02007558', 'n02009912', 'n02037110',
'n02051845', 'n02077923', 'n02085620', 'n02099601', 'n02106550', 'n02106662', 'n02110958',
'n02119022', 'n02123394', 'n02127052', 'n02129165', 'n02133161', 'n02137549', 'n02165456',
'n02174001', 'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02231487',
'n02233338', 'n02236044', 'n02259212', 'n02268443', 'n02279972', 'n02280649', 'n02281787',
'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02361337', 'n02410509', 'n02445715',
'n02454379', 'n02486410', 'n02492035', 'n02504458', 'n02655020', 'n02669723', 'n02672831',
'n02676566', 'n02690373', 'n02701002', 'n02730930', 'n02777292', 'n02782093', 'n02787622',
'n02793495', 'n02797295', 'n02802426', 'n02814860', 'n02815834', 'n02837789', 'n02879718',
'n02883205', 'n02895154', 'n02906734', 'n02948072', 'n02951358', 'n02980441', 'n02992211',
'n02999410', 'n03014705', 'n03026506', 'n03124043', 'n03125729', 'n03187595', 'n03196217',
'n03223299', 'n03250847', 'n03255030', 'n03291819', 'n03325584', 'n03355925', 'n03384352',
'n03388043', 'n03417042', 'n03443371', 'n03444034', 'n03445924', 'n03452741', 'n03483316',
'n03584829', 'n03590841', 'n03594945', 'n03617480', 'n03666591', 'n03670208', 'n03717622',
'n03720891', 'n03721384', 'n03724870', 'n03775071', 'n03788195', 'n03804744', 'n03837869',
'n03840681', 'n03854065', 'n03888257', 'n03891332', 'n03935335', 'n03982430', 'n04019541',
'n04033901', 'n04039381', 'n04067472', 'n04086273', 'n04099969', 'n04118538', 'n04131690',
'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04179913', 'n04208210', 'n04235860',
'n04252077', 'n04252225', 'n04254120', 'n04270147', 'n04275548', 'n04310018', 'n04317175',
'n04344873', 'n04347754', 'n04355338', 'n04366367', 'n04376876', 'n04389033', 'n04399382',
'n04442312', 'n04456115', 'n04482393', 'n04507155', 'n04509417', 'n04532670', 'n04540053',
'n04554684', 'n04562935', 'n04591713', 'n04606251', 'n07583066', 'n07695742', 'n07697313',
'n07697537', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07749582', 'n07753592',
'n07760859', 'n07768694', 'n07831146', 'n09229709', 'n09246464', 'n09472597', 'n09835506',
'n11879895', 'n12057211', 'n12144580', 'n12267677']
imagenet_a_mask = [wnid in set(imagenet_a_wnids) for wnid in all_imagenet_wordnet_ids]
ds.classes = [cl for cl, mask in zip(ds.classes, imagenet_a_mask) if mask]
elif dataset_name == 'imagenet-r':
assert split == 'test', f'Only test split available for {dataset_name}'
# downloadable from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar
if not os.path.exists(root):
print('Downloading imagenet-r...')
call('wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar', shell=True)
# Untar and move to `root`
call('tar xvf imagenet-r.tar', shell=True)
call(f'mv imagenet-r {root}', shell=True)
imagenet_r_wnids = {'n01443537', 'n01484850', 'n01494475', 'n01498041', 'n01514859', 'n01518878', 'n01531178',
'n01534433', 'n01614925', 'n01616318', 'n01630670', 'n01632777', 'n01644373', 'n01677366',
'n01694178', 'n01748264', 'n01770393', 'n01774750', 'n01784675', 'n01806143', 'n01820546',
'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01860187', 'n01882714', 'n01910747',
'n01944390', 'n01983481', 'n01986214', 'n02007558', 'n02009912', 'n02051845', 'n02056570',
'n02066245', 'n02071294', 'n02077923', 'n02085620', 'n02086240', 'n02088094', 'n02088238',
'n02088364', 'n02088466', 'n02091032', 'n02091134', 'n02092339', 'n02094433', 'n02096585',
'n02097298', 'n02098286', 'n02099601', 'n02099712', 'n02102318', 'n02106030', 'n02106166',
'n02106550', 'n02106662', 'n02108089', 'n02108915', 'n02109525', 'n02110185', 'n02110341',
'n02110958', 'n02112018', 'n02112137', 'n02113023', 'n02113624', 'n02113799', 'n02114367',
'n02117135', 'n02119022', 'n02123045', 'n02128385', 'n02128757', 'n02129165', 'n02129604',
'n02130308', 'n02134084', 'n02138441', 'n02165456', 'n02190166', 'n02206856', 'n02219486',
'n02226429', 'n02233338', 'n02236044', 'n02268443', 'n02279972', 'n02317335', 'n02325366',
'n02346627', 'n02356798', 'n02363005', 'n02364673', 'n02391049', 'n02395406', 'n02398521',
'n02410509', 'n02423022', 'n02437616', 'n02445715', 'n02447366', 'n02480495', 'n02480855',
'n02481823', 'n02483362', 'n02486410', 'n02510455', 'n02526121', 'n02607072', 'n02655020',
'n02672831', 'n02701002', 'n02749479', 'n02769748', 'n02793495', 'n02797295', 'n02802426',
'n02808440', 'n02814860', 'n02823750', 'n02841315', 'n02843684', 'n02883205', 'n02906734',
'n02909870', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02966193', 'n02980441',
'n02992529', 'n03124170', 'n03272010', 'n03345487', 'n03372029', 'n03424325', 'n03452741',
'n03467068', 'n03481172', 'n03494278', 'n03495258', 'n03498962', 'n03594945', 'n03602883',
'n03630383', 'n03649909', 'n03676483', 'n03710193', 'n03773504', 'n03775071', 'n03888257',
'n03930630', 'n03947888', 'n04086273', 'n04118538', 'n04133789', 'n04141076', 'n04146614',
'n04147183', 'n04192698', 'n04254680', 'n04266014', 'n04275548', 'n04310018', 'n04325704',
'n04347754', 'n04389033', 'n04409515', 'n04465501', 'n04487394', 'n04522168', 'n04536866',
'n04552348', 'n04591713', 'n07614500', 'n07693725', 'n07695742', 'n07697313', 'n07697537',
'n07714571', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07742313', 'n07745940',
'n07749582', 'n07753275', 'n07753592', 'n07768694', 'n07873807', 'n07880968', 'n07920052',
'n09472597', 'n09835506', 'n10565667', 'n12267677'}
imagenet_r_mask = [wnid in imagenet_r_wnids for wnid in all_imagenet_wordnet_ids]
ds = ImageFolder(root=root, transform=transform, **kwargs)
ds.classes = classnames['imagenet1k']
ds.classes = [cl for cl, mask in zip(ds.classes, imagenet_r_mask) if mask]
elif dataset_name == 'imagenet-o':
assert split == 'test', f'Only test split available for {dataset_name}'
# downloadable from https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar
if not os.path.exists(root):
print('Downloading imagenet-o...')
call('wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar', shell=True)
# Untar and move to `root`
call('tar xvf imagenet-o.tar', shell=True)
call(f'mv imagenet-o {root}', shell=True)
ds = ImageFolder(root=root, transform=transform, **kwargs)
ds.classes = classnames['imagenet1k']
imagenet_o_wnids = ['n01443537', 'n01704323', 'n01770081', 'n01784675', 'n01819313', 'n01820546', 'n01910747',
'n01917289', 'n01968897', 'n02074367', 'n02317335', 'n02319095', 'n02395406', 'n02454379',
'n02606052', 'n02655020', 'n02666196', 'n02672831', 'n02730930', 'n02777292', 'n02783161',
'n02786058', 'n02787622', 'n02791270', 'n02808304', 'n02817516', 'n02841315', 'n02865351',
'n02877765', 'n02892767', 'n02906734', 'n02910353', 'n02916936', 'n02948072', 'n02965783',
'n03000134', 'n03000684', 'n03017168', 'n03026506', 'n03032252', 'n03075370', 'n03109150',
'n03126707', 'n03134739', 'n03160309', 'n03196217', 'n03207743', 'n03218198', 'n03223299',
'n03240683', 'n03271574', 'n03291819', 'n03297495', 'n03314780', 'n03325584', 'n03344393',
'n03347037', 'n03372029', 'n03376595', 'n03388043', 'n03388183', 'n03400231', 'n03445777',
'n03457902', 'n03467068', 'n03482405', 'n03483316', 'n03494278', 'n03530642', 'n03544143',
'n03584829', 'n03590841', 'n03598930', 'n03602883', 'n03649909', 'n03661043', 'n03666591',
'n03676483', 'n03692522', 'n03706229', 'n03717622', 'n03720891', 'n03721384', 'n03724870',
'n03729826', 'n03733131', 'n03733281', 'n03742115', 'n03786901', 'n03788365', 'n03794056',
'n03804744', 'n03814639', 'n03814906', 'n03825788', 'n03840681', 'n03843555', 'n03854065',
'n03857828', 'n03868863', 'n03874293', 'n03884397', 'n03891251', 'n03908714', 'n03920288',
'n03929660', 'n03930313', 'n03937543', 'n03942813', 'n03944341', 'n03961711', 'n03970156',
'n03982430', 'n03991062', 'n03995372', 'n03998194', 'n04005630', 'n04023962', 'n04033901',
'n04040759', 'n04067472', 'n04074963', 'n04116512', 'n04118776', 'n04125021', 'n04127249',
'n04131690', 'n04141975', 'n04153751', 'n04154565', 'n04201297', 'n04204347', 'n04209133',
'n04209239', 'n04228054', 'n04235860', 'n04243546', 'n04252077', 'n04254120', 'n04258138',
'n04265275', 'n04270147', 'n04275548', 'n04330267', 'n04332243', 'n04336792', 'n04347754',
'n04371430', 'n04371774', 'n04372370', 'n04376876', 'n04409515', 'n04417672', 'n04418357',
'n04423845', 'n04429376', 'n04435653', 'n04442312', 'n04482393', 'n04501370', 'n04507155',
'n04525305', 'n04542943', 'n04554684', 'n04557648', 'n04562935', 'n04579432', 'n04591157',
'n04597913', 'n04599235', 'n06785654', 'n06874185', 'n07615774', 'n07693725', 'n07695742',
'n07697537', 'n07711569', 'n07714990', 'n07715103', 'n07716358', 'n07717410', 'n07718472',
'n07720875', 'n07742313', 'n07745940', 'n07747607', 'n07749582', 'n07753275', 'n07753592',
'n07754684', 'n07768694', 'n07836838', 'n07871810', 'n07873807', 'n07880968', 'n09229709',
'n09472597', 'n12144580', 'n12267677', 'n13052670']
imagenet_o_mask = [wnid in set(imagenet_o_wnids) for wnid in all_imagenet_wordnet_ids]
ds.classes = [cl for cl, mask in zip(ds.classes, imagenet_o_mask) if mask]
elif dataset_name == 'objectnet':
assert split == 'test', f'Only test split available for {dataset_name}'
# downloadable from https://objectnet.dev/downloads/objectnet-1.0.zip or https://www.dropbox.com/s/raw/cxeztdtm16nzvuw/objectnet-1.0.zip
if not os.path.exists(root):
print('Downloading objectnet...')
call('wget https://objectnet.dev/downloads/objectnet-1.0.zip', shell=True)
# Untar and move to `root`
call('UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE unzip -P objectnetisatestset objectnet-1.0.zip', shell=True)
os.makedirs(root)
call(f'mv objectnet-1.0 {root}', shell=True)
call(f'cp {root}/objectnet-1.0/mappings/* {root}', shell=True)
ds = objectnet.ObjectNetDataset(root=root, transform=transform)
elif dataset_name == 'voc2007':
ds = voc2007.PASCALVoc2007Cropped(root=root, set='train' if train else 'test', transform=transform,
download=download, **kwargs)
elif dataset_name == 'voc2007_multilabel':
ds = voc2007.PASCALVoc2007(root=root, set='train' if train else 'test', transform=transform, download=download,
**kwargs)
elif dataset_name == 'mscoco_captions':
# https://github.com/mehdidc/retrieval_annotations/releases/tag/1.0.0(annotations)
if split == 'train':
archive_name = 'train2014.zip'
elif split in ('val', 'test'):
archive_name = 'val2014.zip'
else:
raise ValueError(f'split should be train or val or test for `{dataset_name}`')
root_split = os.path.join(root, archive_name.replace('.zip', ''))
if not os.path.exists(root_split):
print(f'Downloading mscoco_captions {archive_name}...')
if not os.path.exists(os.path.join(root, archive_name)):
call(f'wget http://images.cocodataset.org/zips/{archive_name} --output-document={root}/{archive_name}',
shell=True)
call(f'unzip {root}/{archive_name} -d {root}', shell=True)
if not annotation_file:
annotation_file = f'{root}/coco_{split}_karpathy.json'
if language == 'cn':
annotation_file = f'{root}/coco-cn_{split}.json'
root_split = root
print(annotation_file)
if not os.path.exists(annotation_file):
call(
f'wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/coco_{split}_karpathy.json --output-document={annotation_file}',
shell=True)
ds = CocoCaptions(root=root_split, annFile=annotation_file, transform=transform,
target_transform=pre_caption, **kwargs)
elif dataset_name == 'multilingual_mscoco_captions':
from clip_benchmark.datasets import multilingual_mscoco
if (language not in multilingual_mscoco.SUPPORTED_LANGUAGES):
raise ValueError('Unsupported language for multilingual_ms_coco:', language)
def get_archive_name(target_split):
if target_split == 'train':
return 'train2014.zip'
elif target_split in ('val', 'test'):
return 'val2014.zip'
else:
raise ValueError(f'split should be train or val or test for `{dataset_name}`')
def download_mscoco_split(target_split):
archive_name = get_archive_name(target_split)
root_split = os.path.join(root, archive_name.replace('.zip', ''))
if not os.path.exists(root_split):
print(f'Downloading mscoco_captions {archive_name}...')
if not os.path.exists(os.path.join(root, archive_name)):
call(
f'wget http://images.cocodataset.org/zips/{archive_name} --output-document={root}/{archive_name}',
shell=True)
call(f'unzip {root}/{archive_name} -d {root}', shell=True)
# The multilingual MS-COCO uses images from various splits
for target_split in ['train', 'val', 'test']:
download_mscoco_split(target_split)
annotation_file = os.path.join(root, multilingual_mscoco.CAPTIONS_FILE_NAME.format(language))
# if (os.path.exists(annotation_file) == False):
multilingual_mscoco.create_annotation_file(root, language)
ds = multilingual_mscoco.Multilingual_MSCOCO(root=root, ann_file=annotation_file, transform=transform, **kwargs)
elif dataset_name == 'flickr30k':
# downloadable from https://www.kaggle.com/datasets/adityajn105/flickr30k
# https://github.com/mehdidc/retrieval_annotations/releases/tag/1.0.0(annotations)
# `kaggle datasets download -d adityajn105/flickr30k`
if not os.path.exists(root):
# Automatic download
print('Downloading flickr30k...')
if not has_kaggle():
print('Kaggle is needed to download the dataset. Please install it via `pip install kaggle`')
sys.exit(1)
call('kaggle datasets download -d adityajn105/flickr30k', shell=True)
call(f'unzip flickr30k.zip', shell=True)
call(f'mv Images {root}', shell=True)
call(f'mv captions.txt {root}', shell=True)
if not annotation_file:
annotation_file = f'{root}/flickr30k_{split}_karpathy.txt'
if not os.path.exists(annotation_file):
# Download Flickr30K Karpathy test set
annotation_file = f'{root}/flickr30k_{split}_karpathy.txt'
call(
f'wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_{split}_karpathy.txt --output-document={annotation_file}',
shell=True)
if language == 'cn':
annotation_file = f'{root}/flickr30k_cn_{split}.txt'
print(annotation_file)
ds = flickr.Flickr(root=f'{root}/Images', ann_file=annotation_file, transform=transform,
target_transform=pre_caption, **kwargs)
elif dataset_name == 'flickr8k':
# downloadable from https://www.kaggle.com/datasets/adityajn105/flickr8k
# `kaggle datasets download -d adityajn105/flickr8k`
# https://github.com/mehdidc/retrieval_annotations/releases/tag/1.0.0(annotations)
if not os.path.exists(root):
# Automatic download
print('Downloading flickr8k...')
if not has_kaggle():
print('Kaggle is needed to download the dataset. Please install it via `pip install kaggle`')
sys.exit(1)
call('kaggle datasets download -d adityajn105/flickr8k', shell=True)
call(f'unzip flickr8k.zip', shell=True)
call(f'mv Images {root}', shell=True)
call(f'mv captions.txt {root}', shell=True)
if not annotation_file:
annotation_file = f'{root}/flickr8k_{split}_karpathy.txt'
if not os.path.exists(annotation_file):
# Download Flickr8K Karpathy test set
annotation_file = f'{root}/flickr8k_{split}_karpathy.txt'
call(
f'wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr8k_{split}_karpathy.txt --output-document={annotation_file}',
shell=True)
ds = flickr.Flickr(root=root, ann_file=annotation_file, transform=transform, **kwargs)
elif dataset_name == 'food101':
ds = Food101(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
# we use the default class names, we just replace "_" by spaces
# to delimit words
ds.classes = [cl.replace('_', ' ') for cl in ds.classes]
elif dataset_name == 'sun397':
warnings.warn(
f'split argument ignored for `{dataset_name}`, there are no pre-defined train/test splits for this dataset')
# we use the default class names, we just replace "_" and "/" by spaces
# to delimit words
ds = SUN397(root=root, transform=transform, download=download, **kwargs)
ds.classes = [cl.replace('_', ' ').replace('/', ' ') for cl in ds.classes]
elif dataset_name == 'cars':
ds = StanfordCars(root=root, split='train' if train else 'test', transform=transform, download=download,
**kwargs)
elif dataset_name == 'fgvc_aircraft':
ds = FGVCAircraft(root=root, annotation_level='variant', split='train' if train else 'test',
transform=transform, download=download, **kwargs)
elif dataset_name == 'dtd':
ds = DTD(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
elif dataset_name == 'pets':
ds = OxfordIIITPet(root=root, split='train' if train else 'test', target_types='category', transform=transform,
download=download, **kwargs)
elif dataset_name == 'caltech101':
warnings.warn(
f'split argument ignored for `{dataset_name}`, there are no pre-defined train/test splits for this dataset')
# broken download link (can't download google drive), fixed by this PR https://github.com/pytorch/vision/pull/5645
# also available in "vtab/caltech101" using VTAB splits, we advice to use VTAB version rather than this one
# since in this one (torchvision) there are no pre-defined test splits
ds = caltech101.Caltech101(root=root, target_type='category', transform=transform, download=download, **kwargs)
ds.classes = classnames['caltech101']
elif dataset_name == 'flowers':
ds = Flowers102(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
# class indices started by 1 until it was fixed in a PR (#TODO link of the PR)
# if older torchvision version, fix it using a target transform that decrements label index
# TODO figure out minimal torchvision version needed instead of decrementing
if ds[0][1] == 1:
ds.target_transform = lambda y: y - 1
ds.classes = classnames['flowers']
elif dataset_name == 'birdsnap':
ds = BirdsnapV2(root=root, split='train' if train else 'test', transform=transform, **kwargs)
# ds.classes = ds.classes
elif dataset_name == 'mnist':
ds = MNIST(root=root, train=train, transform=transform, download=download, **kwargs)
ds.classes = classnames['mnist']
elif dataset_name == 'stl10':
ds = STL10(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
elif dataset_name == 'eurosat':
warnings.warn(
f'split argument ignored for `{dataset_name}`, there are no pre-defined train/test splits for this dataset')
ds = EuroSAT(root=root, transform=transform, download=download, **kwargs)
ds.classes = classnames['eurosat']
elif dataset_name == 'gtsrb':
ds = GTSRB(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
ds.classes = classnames['gtsrb']
elif dataset_name == 'country211':
ds = Country211(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
ds.classes = classnames['country211']
elif dataset_name == 'pcam':
# Dead link. Fixed by this PR on torchvision https://github.com/pytorch/vision/pull/5645
# TODO figure out minimal torchvision version needed
ds = PCAM(root=root, split='train' if train else 'test', transform=transform, download=download, **kwargs)
ds.classes = classnames['pcam']
elif dataset_name == 'renderedsst2':
ds = RenderedSST2(root=root, split='train' if train else 'test', transform=transform, download=download,
**kwargs)
elif dataset_name == 'fer2013':
# Downloadable from https://www.kaggle.com/datasets/msambare/fer2013
# `kaggle datasets download -d msambare/fer2013`
if not os.path.exists(root):
# Automatic download
print('Downloading fer2013...')
if not has_kaggle():
print('Kaggle is needed to download the dataset. Please install it via `pip install kaggle`')
sys.exit(1)
call('kaggle datasets download -d msambare/fer2013', shell=True)
call(f'unzip fer2013.zip -d {root}', shell=True)
root = os.path.join(root, 'train' if train else 'test')
ds = ImageFolder(root=root, transform=transform)
ds.classes = classnames['fer2013']
elif dataset_name.startswith('tfds/'):
# TFDS datasets support using `timm` and `tensorflow_datasets`
prefix, *name_list = dataset_name.split('/')
name = '/'.join(name_list)
ds = build_tfds_dataset(name, download=download, split=split, data_dir=root, transform=transform)
elif dataset_name.startswith('vtab/'):
# VTAB datasets support using `tensorflow_datasets` and `task_adaptation`
prefix, *name_list = dataset_name.split('/')
name = '/'.join(name_list)
ds = build_vtab_dataset(name, download=download, split=split, data_dir=root, transform=transform,
classnames=classnames)
elif dataset_name.startswith('wds/'):
# WebDataset support using `webdataset` library
name = dataset_name.split('/', 1)[1]
ds = build_wds_dataset(name, transform=transform, split=split, data_dir=root, cache_dir=wds_cache_dir)
return ds
elif dataset_name == 'dummy':
ds = Dummy()
else:
raise ValueError(f'Unsupported dataset: {dataset_name}.')
if cupl:
ds.templates = templates_cupl
else:
ds.templates = templates
return ds
class Dummy():
def __init__(self):
self.classes = ['blank image', 'noisy image']
def __getitem__(self, i):
return torch.zeros(3, 224, 224), 0
def __len__(self):
return 1
def get_dataset_default_task(dataset):
if dataset in ('flickr30k', 'flickr8k', 'mscoco_captions', 'multilingual_mscoco_captions'):
return 'zeroshot_retrieval'
else:
return 'zeroshot_classification'
def get_dataset_collate_fn(dataset_name):
if dataset_name in ('mscoco_captions', 'multilingual_mscoco_captions', 'flickr30k', 'flickr8k'):
return image_captions_collate_fn
else:
return default_collate
def has_gdown():
return call('which gdown', shell=True) == 0
def has_kaggle():
return call('which kaggle', shell=True) == 0
def build_vtab_dataset(dataset_name, transform, download=True, split='test', data_dir='root', classnames=[]):
# Using VTAB splits instead of default TFDS splits
from .tfds import (VTABIterableDataset, disable_gpus_on_tensorflow,
download_tfds_dataset)
# avoid Tensorflow owning GPUs to not clash with PyTorch
disable_gpus_on_tensorflow()
# by default we take classes from TFDS (default behavior if `classes` stays None),
# except for the datasets that will override `classes` (e.g., clevr_*)
classes = None
if dataset_name == 'caltech101':
from task_adaptation.data.caltech import Caltech101
tfds_dataset = Caltech101(data_dir=data_dir)
classes = classnames['caltech101_vtab']
elif dataset_name == 'cars':
from task_adaptation.data.cars import CarsData
tfds_dataset = CarsData(data_dir=data_dir)
elif dataset_name in ('cifar10', 'cifar100'):
from task_adaptation.data.cifar import CifarData
tfds_dataset = CifarData(data_dir=data_dir, num_classes=10 if dataset_name == 'cifar10' else 100)
elif dataset_name.startswith('clevr_'):
from task_adaptation.data.clevr import CLEVRData
task = _extract_task(dataset_name)
assert task in ('count_all', 'closest_object_distance')
tfds_dataset = CLEVRData(task=task, data_dir=data_dir)
if task == 'count_all':
classes = classnames['clevr_count_all']
elif task == 'closest_object_distance':
classes = classnames['clevr_closest_object_distance']
else:
raise ValueError(f'non supported: {task}')
elif dataset_name == 'cub':
from task_adaptation.data.cub import CUB2011Data
tfds_dataset = CUB2011Data(data_dir=data_dir)
elif dataset_name == 'diabetic_retinopathy':
# Needs manual download from Kaggle
# 1) `kaggle competitions download -c diabetic-retinopathy-detection` on $ROOT/downloads/manual
# 2) extract archives on $ROOT/downloads/manual
if not os.path.exists(data_dir):
# Automatic download
print('Downloading diabetic_retinopathy...')
if not has_kaggle():
print('Kaggle is needed to download the dataset. Please install it via `pip install kaggle`')
sys.exit(1)
os.makedirs(os.path.join(data_dir, 'downloads', 'manual'))
call(f'kaggle competitions download -c diabetic-retinopathy-detection -p {data_dir}/downloads/manual',
shell=True)
call(
f'cd {data_dir}/downloads/manual;unzip diabetic-retinopathy-detection.zip;cat train.zip*>train.zip;cat test.zip*>test.zip;unzip train.zip; unzip test.zip;unzip sample.zip;unzip trainLabels.csv.zip',
shell=True)
from task_adaptation.data.diabetic_retinopathy import RetinopathyData
tfds_dataset = RetinopathyData(config='btgraham-300', data_dir=data_dir)
classes = classnames['diabetic_retinopathy']
elif dataset_name == 'dmlab':
from task_adaptation.data.dmlab import DmlabData
download_tfds_dataset('dmlab',
data_dir=data_dir) # it's not called in the original VTAB code, so we do it explictly
tfds_dataset = DmlabData(data_dir=data_dir)
classes = classnames['dmlab']
elif dataset_name.startswith('dsprites_'):
from task_adaptation.data.dsprites import DSpritesData
task = _extract_task(dataset_name)
assert task in ('label_shape', 'label_scale', 'label_orientation', 'label_x_position', 'label_y_position')
tfds_dataset = DSpritesData(task, data_dir=data_dir)
classes = tfds_dataset._dataset_builder.info.features[task].names
elif dataset_name == 'dtd':
from task_adaptation.data.dtd import DTDData
tfds_dataset = DTDData(data_dir=data_dir)
elif dataset_name == 'eurosat':
from task_adaptation.data.eurosat import EurosatData
tfds_dataset = EurosatData(subset='rgb', data_key='image', data_dir=data_dir)
classes = classnames['eurosat']
elif dataset_name == 'food101':
from task_adaptation.data.food101 import Food101Data
tfds_dataset = Food101Data(data_dir=data_dir)
elif dataset_name == 'inaturalist':
from task_adaptation.data.inaturalist import INaturalistData
tfds_dataset = INaturalistData(data_dir=data_dir, year=2017)
elif dataset_name.startswith('kitti_'):
from .kitti import KittiData
task = _extract_task(dataset_name)
assert task in (
'count_all', 'count_left', 'count_far', 'count_near',
'closest_object_distance', 'closest_object_x_location',
'count_vehicles', 'closest_vehicle_distance',
)
tfds_dataset = KittiData(task=task, data_dir=data_dir)
if task == 'closest_vehicle_distance':
classes = classnames['kitti_closest_vehicle_distance']
else:
raise ValueError(f'Unsupported task: {task}')
elif dataset_name == 'flowers':
from task_adaptation.data.oxford_flowers102 import OxfordFlowers102Data
tfds_dataset = OxfordFlowers102Data(data_dir=data_dir)
elif dataset_name == 'pets':
from task_adaptation.data.oxford_iiit_pet import OxfordIIITPetData
tfds_dataset = OxfordIIITPetData(data_dir=data_dir)
classes = classnames['pets']
elif dataset_name == 'pcam':
from task_adaptation.data.patch_camelyon import PatchCamelyonData
tfds_dataset = PatchCamelyonData(data_dir=data_dir)
classes = classnames['pcam']
elif dataset_name == 'resisc45':
# Needs download from OneDrive: https://1drv.ms/u/s!AmgKYzARBl5ca3HNaHIlzp_IXjs
# The archive needs to to be put at <DATASET_ROOT>/downloads/manual then extracted
# if not os.path.exists(data_dir):
# os.makedirs(os.path.join(data_dir, "downloads", "manual"))
# call(f"wget 'https://onedrive.live.com/download?resid=5C5E061130630A68!107&authkey=!AHHNaHIlzp_IXjs' --output-document={data_dir}/downloads/manual/resisc45.rar", shell=True)
# call(f"cd {data_dir}/downloads/manual;unrar x resisc45.rar", shell=True)
from task_adaptation.data.resisc45 import Resisc45Data
tfds_dataset = Resisc45Data(data_dir=data_dir)
elif dataset_name.startswith('smallnorb_'):
from task_adaptation.data.smallnorb import SmallNORBData
task = _extract_task(dataset_name)
assert task in ('label_category', 'label_elevation', 'label_azimuth', 'label_lighting')
tfds_dataset = SmallNORBData(predicted_attribute=task, data_dir=data_dir)
classes = tfds_dataset._dataset_builder.info.features[task].names
elif dataset_name == 'sun397':
from task_adaptation.data.sun397 import Sun397Data
# FIXME There is a problem in `sun397`, when TFDS tries download it
# there is an image that cannot be decoded. For the time being
# we will use torchvision's SUN397 instead.
tfds_dataset = Sun397Data(config='tfds', data_dir=data_dir)
elif dataset_name == 'svhn':
from task_adaptation.data.svhn import SvhnData
tfds_dataset = SvhnData(data_dir=data_dir)
classes = classnames['svhn']
else:
raise ValueError(f'Unsupported dataset: {dataset_name}')
ds = VTABIterableDataset(
tfds_dataset,
input_name='image', label_name='label',
transform=transform,
target_transform=int,
split=split,
classes=classes,
)
return ds
def build_tfds_dataset(name, transform, download=True, split='test', data_dir='root', classes=None):
from .tfds import disable_gpus_on_tensorflow
disable_gpus_on_tensorflow()
import tensorflow_datasets as tfds
import timm
builder = tfds.builder(name, data_dir=data_dir)
if download:
builder.download_and_prepare()
splits = list(builder.info.splits.keys())
assert split in splits, (split, splits)
ds = timm.data.create_dataset(f'tfds/{name}', data_dir, split=split, transform=transform, target_transform=int)
ds.classes = builder.info.features['label'].names if classes is None else classes
return ds
def build_wds_dataset(dataset_name, transform, split='test', data_dir='root', cache_dir=None):
"""
Load a dataset in WebDataset format. Either local paths or HTTP URLs can be specified.
Expected file structure is:
```
data_dir/
train/
nshards.txt
0.tar
1.tar
...
test/
nshards.txt
0.tar
1.tar
...
classnames.txt
zeroshot_classification_templates.txt
dataset_type.txt
```
Classnames and templates are required for zeroshot classification, while dataset type
(equal to "retrieval") is required for zeroshot retrieval datasets.
You can use the `clip_benchmark_export_wds` or corresponding API
(`clip_benchmark.webdataset_builder.convert_dataset`) to convert datasets to this format.
Set `cache_dir` to a path to cache the dataset, otherwise, no caching will occur.
"""
import webdataset as wds
def read_txt(fname):
if '://' in fname:
stream = os.popen("curl -L -s --fail '%s'" % fname, 'r')
value = stream.read()
if stream.close():
raise FileNotFoundError('Failed to retreive data')
else:
with open(fname, 'r') as file:
value = file.read()
return value
# Special handling for Huggingface datasets
# Git LFS files have a different file path to access the raw data than other files
if data_dir.startswith('https://huggingface.co/datasets'):
# Format: https://huggingface.co/datasets/<USERNAME>/<REPO>/tree/<BRANCH>
*split_url_head, _, url_path = data_dir.split('/', 7)
url_head = '/'.join(split_url_head)
metadata_dir = '/'.join([url_head, 'raw', url_path])
tardata_dir = '/'.join([url_head, 'resolve', url_path])
else:
metadata_dir = tardata_dir = data_dir
# Get number of shards
nshards_fname = os.path.join(metadata_dir, split, 'nshards.txt')
nshards = int(read_txt(nshards_fname)) # Do not catch FileNotFound, nshards.txt should be mandatory
# Get dataset type (classification or retrieval)
type_fname = os.path.join(metadata_dir, 'dataset_type.txt')
try:
dataset_type = read_txt(type_fname).strip().lower()
except FileNotFoundError:
# print("WARNING: dataset_type.txt not found, assuming type=classification")
dataset_type = 'classification'
#
filepattern = os.path.join(tardata_dir, split, '{0..%d}.tar' % (nshards - 1))
# Load webdataset (support WEBP, PNG, and JPG for now)
if not cache_dir or not isinstance(cache_dir, str):
cache_dir = None
dataset = wds.WebDataset(filepattern, cache_dir=cache_dir).decode(
wds.autodecode.ImageHandler('pil', extensions=['webp', 'png', 'jpg', 'jpeg']))
# Load based on classification or retrieval task
if dataset_type == 'retrieval':
dataset = (dataset
.to_tuple(['webp', 'png', 'jpg', 'jpeg'], 'txt')
.map_tuple(transform, str.splitlines)
)
dataset.classes = dataset.templates = None
else:
label_type = 'npy' if dataset_type == 'multilabel' else 'cls' # Special case for multilabel
dataset = (dataset
.to_tuple(['webp', 'png', 'jpg', 'jpeg'], label_type)
.map_tuple(transform, None)
)
# Get class names if present
classnames_fname = os.path.join(metadata_dir, 'classnames.txt')
try:
dataset.classes = [line.strip() for line in read_txt(classnames_fname).splitlines() if line.strip()]
except FileNotFoundError:
print('WARNING: classnames.txt not found')
dataset.classes = None
# Get zeroshot classification templates if present
templates_fname = os.path.join(metadata_dir, 'zeroshot_classification_templates.txt')
try:
dataset.templates = [line.strip() for line in read_txt(templates_fname).splitlines() if line.strip()]
except FileNotFoundError:
print('WARNING: zeroshot_classification_templates.txt not found')
dataset.templates = None
return dataset
def _extract_task(dataset_name):
prefix, *task_name_list = dataset_name.split('_')
task = '_'.join(task_name_list)
return task
def image_captions_collate_fn(batch):
transposed = list(zip(*batch))
imgs = default_collate(transposed[0])
texts = transposed[1]
return imgs, texts
def get_dataset_collection_from_file(path):
return [l.strip() for l in open(path).readlines()]
dataset_collection = {
'vtab': [
'vtab/caltech101',
'vtab/cifar100',
'vtab/clevr_count_all',
'vtab/clevr_closest_object_distance',
'vtab/diabetic_retinopathy',
'vtab/dmlab',
'vtab/dsprites_label_orientation',
'vtab/dsprites_label_x_position',
'vtab/dtd',
'vtab/eurosat',
'vtab/kitti_closest_vehicle_distance',
'vtab/flowers',
'vtab/pets',
'vtab/pcam',
'vtab/resisc45',
'vtab/smallnorb_label_azimuth',
'vtab/smallnorb_label_elevation',
'sun397',
'vtab/svhn',
],
'vtab+': [
'imagenet1k',
'imagenetv2',
'imagenet_sketch',
'imagenet-a',
'imagenet-r',
'objectnet',
'fer2013',
'voc2007',
'voc2007_multilabel',
'sun397',
'cars',
'fgvc_aircraft',
'mnist',
'stl10',
'gtsrb',
'country211',
'renderedsst2',
'vtab/caltech101',
'vtab/cifar10',
'vtab/cifar100',
'vtab/clevr_count_all',
'vtab/clevr_closest_object_distance',
'vtab/diabetic_retinopathy',
'vtab/dmlab',
'vtab/dsprites_label_orientation',
'vtab/dsprites_label_x_position',
'vtab/dtd',
'vtab/eurosat',
'vtab/kitti_closest_vehicle_distance',
'vtab/flowers',
'vtab/pets',
'vtab/pcam',
'vtab/resisc45',
'vtab/smallnorb_label_azimuth',
'vtab/smallnorb_label_elevation',
'vtab/svhn',
],
'retrieval': [
'mscoco_captions',
'flickr8k',
'flickr30k',
],
'imagenet_robustness': [
'imagenetv2',
'imagenet_sketch',
'imagenet-a',
'imagenet-r',
'objectnet',
],
}
# use by imagenet robustness datasets
all_imagenet_wordnet_ids = ['n01440764', 'n01443537', 'n01484850', 'n01491361', 'n01494475', 'n01496331', 'n01498041',
'n01514668', 'n01514859', 'n01518878', 'n01530575', 'n01531178', 'n01532829', 'n01534433',
'n01537544', 'n01558993', 'n01560419', 'n01580077', 'n01582220', 'n01592084', 'n01601694',
'n01608432', 'n01614925', 'n01616318', 'n01622779', 'n01629819', 'n01630670', 'n01631663',
'n01632458', 'n01632777', 'n01641577', 'n01644373', 'n01644900', 'n01664065', 'n01665541',
'n01667114', 'n01667778', 'n01669191', 'n01675722', 'n01677366', 'n01682714', 'n01685808',
'n01687978', 'n01688243', 'n01689811', 'n01692333', 'n01693334', 'n01694178', 'n01695060',
'n01697457', 'n01698640', 'n01704323', 'n01728572', 'n01728920', 'n01729322', 'n01729977',
'n01734418', 'n01735189', 'n01737021', 'n01739381', 'n01740131', 'n01742172', 'n01744401',
'n01748264', 'n01749939', 'n01751748', 'n01753488', 'n01755581', 'n01756291', 'n01768244',
'n01770081', 'n01770393', 'n01773157', 'n01773549', 'n01773797', 'n01774384', 'n01774750',
'n01775062', 'n01776313', 'n01784675', 'n01795545', 'n01796340', 'n01797886', 'n01798484',
'n01806143', 'n01806567', 'n01807496', 'n01817953', 'n01818515', 'n01819313', 'n01820546',
'n01824575', 'n01828970', 'n01829413', 'n01833805', 'n01843065', 'n01843383', 'n01847000',
'n01855032', 'n01855672', 'n01860187', 'n01871265', 'n01872401', 'n01873310', 'n01877812',
'n01882714', 'n01883070', 'n01910747', 'n01914609', 'n01917289', 'n01924916', 'n01930112',
'n01943899', 'n01944390', 'n01945685', 'n01950731', 'n01955084', 'n01968897', 'n01978287',
'n01978455', 'n01980166', 'n01981276', 'n01983481', 'n01984695', 'n01985128', 'n01986214',
'n01990800', 'n02002556', 'n02002724', 'n02006656', 'n02007558', 'n02009229', 'n02009912',
'n02011460', 'n02012849', 'n02013706', 'n02017213', 'n02018207', 'n02018795', 'n02025239',
'n02027492', 'n02028035', 'n02033041', 'n02037110', 'n02051845', 'n02056570', 'n02058221',
'n02066245', 'n02071294', 'n02074367', 'n02077923', 'n02085620', 'n02085782', 'n02085936',
'n02086079', 'n02086240', 'n02086646', 'n02086910', 'n02087046', 'n02087394', 'n02088094',
'n02088238', 'n02088364', 'n02088466', 'n02088632', 'n02089078', 'n02089867', 'n02089973',
'n02090379', 'n02090622', 'n02090721', 'n02091032', 'n02091134', 'n02091244', 'n02091467',
'n02091635', 'n02091831', 'n02092002', 'n02092339', 'n02093256', 'n02093428', 'n02093647',
'n02093754', 'n02093859', 'n02093991', 'n02094114', 'n02094258', 'n02094433', 'n02095314',
'n02095570', 'n02095889', 'n02096051', 'n02096177', 'n02096294', 'n02096437', 'n02096585',
'n02097047', 'n02097130', 'n02097209', 'n02097298', 'n02097474', 'n02097658', 'n02098105',
'n02098286', 'n02098413', 'n02099267', 'n02099429', 'n02099601', 'n02099712', 'n02099849',
'n02100236', 'n02100583', 'n02100735', 'n02100877', 'n02101006', 'n02101388', 'n02101556',
'n02102040', 'n02102177', 'n02102318', 'n02102480', 'n02102973', 'n02104029', 'n02104365',
'n02105056', 'n02105162', 'n02105251', 'n02105412', 'n02105505', 'n02105641', 'n02105855',
'n02106030', 'n02106166', 'n02106382', 'n02106550', 'n02106662', 'n02107142', 'n02107312',
'n02107574', 'n02107683', 'n02107908', 'n02108000', 'n02108089', 'n02108422', 'n02108551',
'n02108915', 'n02109047', 'n02109525', 'n02109961', 'n02110063', 'n02110185', 'n02110341',
'n02110627', 'n02110806', 'n02110958', 'n02111129', 'n02111277', 'n02111500', 'n02111889',
'n02112018', 'n02112137', 'n02112350', 'n02112706', 'n02113023', 'n02113186', 'n02113624',
'n02113712', 'n02113799', 'n02113978', 'n02114367', 'n02114548', 'n02114712', 'n02114855',
'n02115641', 'n02115913', 'n02116738', 'n02117135', 'n02119022', 'n02119789', 'n02120079',
'n02120505', 'n02123045', 'n02123159', 'n02123394', 'n02123597', 'n02124075', 'n02125311',
'n02127052', 'n02128385', 'n02128757', 'n02128925', 'n02129165', 'n02129604', 'n02130308',
'n02132136', 'n02133161', 'n02134084', 'n02134418', 'n02137549', 'n02138441', 'n02165105',
'n02165456', 'n02167151', 'n02168699', 'n02169497', 'n02172182', 'n02174001', 'n02177972',
'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02229544', 'n02231487', 'n02233338',
'n02236044', 'n02256656', 'n02259212', 'n02264363', 'n02268443', 'n02268853', 'n02276258',
'n02277742', 'n02279972', 'n02280649', 'n02281406', 'n02281787', 'n02317335', 'n02319095',
'n02321529', 'n02325366', 'n02326432', 'n02328150', 'n02342885', 'n02346627', 'n02356798',
'n02361337', 'n02363005', 'n02364673', 'n02389026', 'n02391049', 'n02395406', 'n02396427',
'n02397096', 'n02398521', 'n02403003', 'n02408429', 'n02410509', 'n02412080', 'n02415577',
'n02417914', 'n02422106', 'n02422699', 'n02423022', 'n02437312', 'n02437616', 'n02441942',
'n02442845', 'n02443114', 'n02443484', 'n02444819', 'n02445715', 'n02447366', 'n02454379',
'n02457408', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02483708', 'n02484975',
'n02486261', 'n02486410', 'n02487347', 'n02488291', 'n02488702', 'n02489166', 'n02490219',
'n02492035', 'n02492660', 'n02493509', 'n02493793', 'n02494079', 'n02497673', 'n02500267',
'n02504013', 'n02504458', 'n02509815', 'n02510455', 'n02514041', 'n02526121', 'n02536864',
'n02606052', 'n02607072', 'n02640242', 'n02641379', 'n02643566', 'n02655020', 'n02666196',
'n02667093', 'n02669723', 'n02672831', 'n02676566', 'n02687172', 'n02690373', 'n02692877',
'n02699494', 'n02701002', 'n02704792', 'n02708093', 'n02727426', 'n02730930', 'n02747177',
'n02749479', 'n02769748', 'n02776631', 'n02777292', 'n02782093', 'n02783161', 'n02786058',
'n02787622', 'n02788148', 'n02790996', 'n02791124', 'n02791270', 'n02793495', 'n02794156',
'n02795169', 'n02797295', 'n02799071', 'n02802426', 'n02804414', 'n02804610', 'n02807133',
'n02808304', 'n02808440', 'n02814533', 'n02814860', 'n02815834', 'n02817516', 'n02823428',
'n02823750', 'n02825657', 'n02834397', 'n02835271', 'n02837789', 'n02840245', 'n02841315',
'n02843684', 'n02859443', 'n02860847', 'n02865351', 'n02869837', 'n02870880', 'n02871525',
'n02877765', 'n02879718', 'n02883205', 'n02892201', 'n02892767', 'n02894605', 'n02895154',
'n02906734', 'n02909870', 'n02910353', 'n02916936', 'n02917067', 'n02927161', 'n02930766',
'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02951585', 'n02963159', 'n02965783',
'n02966193', 'n02966687', 'n02971356', 'n02974003', 'n02977058', 'n02978881', 'n02979186',
'n02980441', 'n02981792', 'n02988304', 'n02992211', 'n02992529', 'n02999410', 'n03000134',
'n03000247', 'n03000684', 'n03014705', 'n03016953', 'n03017168', 'n03018349', 'n03026506',
'n03028079', 'n03032252', 'n03041632', 'n03042490', 'n03045698', 'n03047690', 'n03062245',
'n03063599', 'n03063689', 'n03065424', 'n03075370', 'n03085013', 'n03089624', 'n03095699',
'n03100240', 'n03109150', 'n03110669', 'n03124043', 'n03124170', 'n03125729', 'n03126707',
'n03127747', 'n03127925', 'n03131574', 'n03133878', 'n03134739', 'n03141823', 'n03146219',
'n03160309', 'n03179701', 'n03180011', 'n03187595', 'n03188531', 'n03196217', 'n03197337',
'n03201208', 'n03207743', 'n03207941', 'n03208938', 'n03216828', 'n03218198', 'n03220513',
'n03223299', 'n03240683', 'n03249569', 'n03250847', 'n03255030', 'n03259280', 'n03271574',
'n03272010', 'n03272562', 'n03290653', 'n03291819', 'n03297495', 'n03314780', 'n03325584',
'n03337140', 'n03344393', 'n03345487', 'n03347037', 'n03355925', 'n03372029', 'n03376595',
'n03379051', 'n03384352', 'n03388043', 'n03388183', 'n03388549', 'n03393912', 'n03394916',
'n03400231', 'n03404251', 'n03417042', 'n03424325', 'n03425413', 'n03443371', 'n03444034',
'n03445777', 'n03445924', 'n03447447', 'n03447721', 'n03450230', 'n03452741', 'n03457902',
'n03459775', 'n03461385', 'n03467068', 'n03476684', 'n03476991', 'n03478589', 'n03481172',
'n03482405', 'n03483316', 'n03485407', 'n03485794', 'n03492542', 'n03494278', 'n03495258',
'n03496892', 'n03498962', 'n03527444', 'n03529860', 'n03530642', 'n03532672', 'n03534580',
'n03535780', 'n03538406', 'n03544143', 'n03584254', 'n03584829', 'n03590841', 'n03594734',
'n03594945', 'n03595614', 'n03598930', 'n03599486', 'n03602883', 'n03617480', 'n03623198',
'n03627232', 'n03630383', 'n03633091', 'n03637318', 'n03642806', 'n03649909', 'n03657121',
'n03658185', 'n03661043', 'n03662601', 'n03666591', 'n03670208', 'n03673027', 'n03676483',
'n03680355', 'n03690938', 'n03691459', 'n03692522', 'n03697007', 'n03706229', 'n03709823',
'n03710193', 'n03710637', 'n03710721', 'n03717622', 'n03720891', 'n03721384', 'n03724870',
'n03729826', 'n03733131', 'n03733281', 'n03733805', 'n03742115', 'n03743016', 'n03759954',
'n03761084', 'n03763968', 'n03764736', 'n03769881', 'n03770439', 'n03770679', 'n03773504',
'n03775071', 'n03775546', 'n03776460', 'n03777568', 'n03777754', 'n03781244', 'n03782006',
'n03785016', 'n03786901', 'n03787032', 'n03788195', 'n03788365', 'n03791053', 'n03792782',
'n03792972', 'n03793489', 'n03794056', 'n03796401', 'n03803284', 'n03804744', 'n03814639',
'n03814906', 'n03825788', 'n03832673', 'n03837869', 'n03838899', 'n03840681', 'n03841143',
'n03843555', 'n03854065', 'n03857828', 'n03866082', 'n03868242', 'n03868863', 'n03871628',
'n03873416', 'n03874293', 'n03874599', 'n03876231', 'n03877472', 'n03877845', 'n03884397',
'n03887697', 'n03888257', 'n03888605', 'n03891251', 'n03891332', 'n03895866', 'n03899768',
'n03902125', 'n03903868', 'n03908618', 'n03908714', 'n03916031', 'n03920288', 'n03924679',
'n03929660', 'n03929855', 'n03930313', 'n03930630', 'n03933933', 'n03935335', 'n03937543',
'n03938244', 'n03942813', 'n03944341', 'n03947888', 'n03950228', 'n03954731', 'n03956157',
'n03958227', 'n03961711', 'n03967562', 'n03970156', 'n03976467', 'n03976657', 'n03977966',
'n03980874', 'n03982430', 'n03983396', 'n03991062', 'n03992509', 'n03995372', 'n03998194',
'n04004767', 'n04005630', 'n04008634', 'n04009552', 'n04019541', 'n04023962', 'n04026417',
'n04033901', 'n04033995', 'n04037443', 'n04039381', 'n04040759', 'n04041544', 'n04044716',
'n04049303', 'n04065272', 'n04067472', 'n04069434', 'n04070727', 'n04074963', 'n04081281',
'n04086273', 'n04090263', 'n04099969', 'n04111531', 'n04116512', 'n04118538', 'n04118776',
'n04120489', 'n04125021', 'n04127249', 'n04131690', 'n04133789', 'n04136333', 'n04141076',
'n04141327', 'n04141975', 'n04146614', 'n04147183', 'n04149813', 'n04152593', 'n04153751',
'n04154565', 'n04162706', 'n04179913', 'n04192698', 'n04200800', 'n04201297', 'n04204238',
'n04204347', 'n04208210', 'n04209133', 'n04209239', 'n04228054', 'n04229816', 'n04235860',
'n04238763', 'n04239074', 'n04243546', 'n04251144', 'n04252077', 'n04252225', 'n04254120',
'n04254680', 'n04254777', 'n04258138', 'n04259630', 'n04263257', 'n04264628', 'n04265275',
'n04266014', 'n04270147', 'n04273569', 'n04275548', 'n04277352', 'n04285008', 'n04286575',
'n04296562', 'n04310018', 'n04311004', 'n04311174', 'n04317175', 'n04325704', 'n04326547',
'n04328186', 'n04330267', 'n04332243', 'n04335435', 'n04336792', 'n04344873', 'n04346328',
'n04347754', 'n04350905', 'n04355338', 'n04355933', 'n04356056', 'n04357314', 'n04366367',
'n04367480', 'n04370456', 'n04371430', 'n04371774', 'n04372370', 'n04376876', 'n04380533',
'n04389033', 'n04392985', 'n04398044', 'n04399382', 'n04404412', 'n04409515', 'n04417672',
'n04418357', 'n04423845', 'n04428191', 'n04429376', 'n04435653', 'n04442312', 'n04443257',
'n04447861', 'n04456115', 'n04458633', 'n04461696', 'n04462240', 'n04465501', 'n04467665',
'n04476259', 'n04479046', 'n04482393', 'n04483307', 'n04485082', 'n04486054', 'n04487081',
'n04487394', 'n04493381', 'n04501370', 'n04505470', 'n04507155', 'n04509417', 'n04515003',
'n04517823', 'n04522168', 'n04523525', 'n04525038', 'n04525305', 'n04532106', 'n04532670',
'n04536866', 'n04540053', 'n04542943', 'n04548280', 'n04548362', 'n04550184', 'n04552348',
'n04553703', 'n04554684', 'n04557648', 'n04560804', 'n04562935', 'n04579145', 'n04579432',
'n04584207', 'n04589890', 'n04590129', 'n04591157', 'n04591713', 'n04592741', 'n04596742',
'n04597913', 'n04599235', 'n04604644', 'n04606251', 'n04612504', 'n04613696', 'n06359193',