-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
265 lines (221 loc) · 12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import torch
from transformers import AutoModel, AutoTokenizer, ElectraTokenizerFast, BertConfig, BertModel
from utils import load_model
import torch.nn.functional as F
import torch.nn as nn
from sklearn.metrics import *
from superdebug import debug
class PredictionLayer(nn.Module):
'''
Arguments
- **task**: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss
- **use_bias**: bool.Whether add bias term or not.
'''
def __init__(self, task='binary', use_bias=True, **kwargs):
if task not in ["binary", "multiclass", "regression"]:
raise ValueError("task must be binary,multiclass or regression")
super(PredictionLayer, self).__init__()
self.use_bias = use_bias
self.task = task
if self.use_bias:
self.bias = nn.Parameter(torch.zeros((1,)))
def forward(self, X):
output = X
if self.use_bias:
output += self.bias
if self.task == "binary":
output = torch.sigmoid(output)
return output
class GeneralModel(nn.Module):
def __init__(self, config, categorical_features, string_features, original_feature_map, num_all_users = 0, task = "binary"):
super(GeneralModel, self).__init__()
self.device = config["device"]
self.gpus = config["gpus"]
self.config = config
if self.gpus and str(self.gpus[0]) not in self.device:
raise ValueError("`gpus[0]` should be the same gpu with `device`")
self.tokenizer = get_tokenizer(config, categorical_features, string_features, original_feature_map, config["use_voted_users_feature"], num_all_users)
self.out = PredictionLayer(task, )
self.regularization_weight = []
def post_init(self):
self.add_regularization_weight(self.parameters(), l2=self.config["l2_normalization"])
self.to(self.device)
self.compile(torch.optim.Adam(self.parameters(), lr = self.config["learning_rate"]), self.config["loss_function"], metrics=self.config["eval_metrics"])
def add_regularization_weight(self, weight_list, l1=0.0, l2=0.0):
# For a Parameter, put it in a list to keep Compatible with get_regularization_loss()
if isinstance(weight_list, torch.nn.parameter.Parameter):
weight_list = [weight_list]
# For generators, filters and ParameterLists, convert them to a list of tensors to avoid bugs.
# e.g., we can't pickle generator objects when we save the model.
else:
weight_list = list(weight_list)
self.regularization_weight.append((weight_list, l1, l2))
def get_regularization_loss(self, ):
total_reg_loss = torch.zeros((1,), device=self.device)
for weight_list, l1, l2 in self.regularization_weight:
for w in weight_list:
if isinstance(w, tuple):
parameter = w[1] # named_parameters
else:
parameter = w
if l1 > 0:
total_reg_loss += torch.sum(l1 * torch.abs(parameter))
if l2 > 0:
try:
total_reg_loss += torch.sum(l2 * torch.square(parameter))
except AttributeError:
total_reg_loss += torch.sum(l2 * parameter * parameter)
return total_reg_loss
def compile(self, optimizer, loss=None, metrics=None):
"""
:param optimizer: String (name of optimizer) or optimizer instance. See [optimizers](https://pytorch.org/docs/stable/optim.html).
:param loss: String (name of objective function) or objective function. See [losses](https://pytorch.org/docs/stable/nn.functional.html#loss-functions).
:param metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use `metrics=['accuracy']`.
"""
self.metrics_names = ["loss"]
self.optim = self._get_optim(optimizer)
self.loss_func = self._get_loss_func(loss)
self.metrics = self._get_metrics(metrics)
def _get_optim(self, optimizer):
if isinstance(optimizer, str):
if optimizer == "sgd":
optim = torch.optim.SGD(self.parameters(), lr=0.01)
elif optimizer == "adam":
optim = torch.optim.Adam(self.parameters()) # 0.001
elif optimizer == "adagrad":
optim = torch.optim.Adagrad(self.parameters()) # 0.01
elif optimizer == "rmsprop":
optim = torch.optim.RMSprop(self.parameters())
else:
raise NotImplementedError
else:
optim = optimizer
return optim
def _get_loss_func(self, loss):
if isinstance(loss, str):
if loss == "binary_crossentropy":
loss_func = F.binary_cross_entropy
elif loss == "mse":
loss_func = F.mse_loss
def weighted_mse_loss(input, target, weight, reduction = "mean"):
if reduction == "mean":
return torch.mean((weight * (input - target) ** 2))
elif reduction == "sum":
return torch.sum((weight * (input - target) ** 2))
loss_func = weighted_mse_loss
elif loss == "mae":
loss_func = F.l1_loss
else:
raise NotImplementedError
else:
loss_func = loss
return loss_func
def _log_loss(self, y_true, y_pred, eps=1e-7, normalize=True, sample_weight=None, labels=None):
# change eps to improve calculation accuracy
return log_loss(y_true, y_pred, eps, normalize, sample_weight, labels)
def _get_metrics(self, metrics, set_eps=False):
metrics_ = {}
if metrics:
for metric in metrics:
if metric == "binary_crossentropy" or metric == "logloss":
if set_eps:
metrics_[metric] = self._log_loss
else:
metrics_[metric] = log_loss
if metric == "auc":
metrics_[metric] = roc_auc_score
if metric == "mse":
metrics_[metric] = mean_squared_error
if metric == "accuracy" or metric == "acc":
metrics_[metric] = _accuracy_score
self.metrics_names.append(metric)
return metrics_
class TransformerVoter(GeneralModel):
def __init__(self, config, categorical_features, string_features, original_feature_map, num_all_users = 0, task = "binary"):
super(TransformerVoter, self).__init__(config, categorical_features, string_features, original_feature_map, num_all_users, task)
if "custom" not in config["language_model_encoder_name"]:
self.lm_encoder = AutoModel.from_pretrained(config["language_model_encoder_name"])
else:
lm_config = BertConfig(num_attention_heads=2, intermediate_size = config["encoder_hidden_dim"], hidden_size=config["encoder_hidden_dim"], num_hidden_layers=2)
self.lm_encoder = BertModel(lm_config)
self.lm_encoder.resize_token_embeddings(len(self.tokenizer))
self.prediction_head = nn.Linear(config["encoder_hidden_dim"], 1)
if 'USERNAME' in categorical_features:
self.special_token_pos = 2
else:
self.special_token_pos = 0
self.post_init()
def forward(self, input_ids, token_type_ids, attention_mask):
encoder_out = self.lm_encoder(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = attention_mask).last_hidden_state
target_hidden = encoder_out[:, self.special_token_pos, :] # [bsz, hidden_size], 2 is for the USER_i
# encoder_out_pooled = (attention_mask[:,:,None] * encoder_out).sum(axis=1) / attention_mask.sum(axis = 1, keepdim = True)
logit = self.prediction_head(target_hidden)
return self.out(logit) # [bsz, 1]
class LinearModel(GeneralModel):
def __init__(self, config, categorical_features, string_features, original_feature_map, num_all_users = 0, task = "binary"):
super(LinearModel, self).__init__(config, categorical_features, string_features, original_feature_map, num_all_users, task)
assert string_features == []
self.embedding = nn.Embedding(len(self.tokenizer), config["encoder_hidden_dim"])
# self.fcn = nn.Linear(len(categorical_features)*config["encoder_hidden_dim"], config["encoder_hidden_dim"])
hidden_units = [len(categorical_features)*config["encoder_hidden_dim"], config["encoder_hidden_dim"], config["encoder_hidden_dim"]]
self.dropout = nn.Dropout(0)
self.linears = nn.ModuleList(
[nn.Linear(hidden_units[i], hidden_units[i + 1]) for i in range(len(hidden_units) - 1)])
self.activation_layers = nn.ModuleList(
[nn.ReLU(inplace=True) for i in range(len(hidden_units) - 1)])
for name, tensor in self.linears.named_parameters():
if 'weight' in name:
nn.init.normal_(tensor, mean=0, std=0.0001)
self.prediction_head = nn.Linear(config["encoder_hidden_dim"], 1)
self.post_init()
def forward(self, input_ids, token_type_ids, attention_mask):
token_embeddings = self.embedding(input_ids[:, 2::2])
dnn_input = token_embeddings.reshape(token_embeddings.shape[0], -1)
logit = torch.zeros([dnn_input.shape[0], 1]).to(self.device)
# logit += torch.sum(dnn_input, dim=-1, keepdim = True)
# target_hidden = self.fcn(dnn_input)
# target_hidden = F.gelu(target_hidden)
# logit = self.prediction_head(target_hidden)
# deep_out = self.dnn(dnn_input)
for i in range(len(self.linears)):
fc = self.linears[i](dnn_input)
fc = self.activation_layers[i](fc)
fc = self.dropout(fc)
dnn_input = fc
logit += self.prediction_head(dnn_input)
return self.out(logit) # [bsz, 1]
def _accuracy_score(y_true, y_pred, sample_weight=None):
return accuracy_score(y_true, np.where(y_pred > 0.5, 1, 0), sample_weight=sample_weight)
def get_best_model(config, categorical_features, string_features, original_feature_map):
model_device, model_gpus = config["device"], config["gpus"]
config["device"], config["gpus"] = "cpu", None
model = TransformerVoter(config, categorical_features, string_features, original_feature_map)
model, _, _, _, model_dict = load_model(config["save_model_dir"], model, model.optim, 0, 0, "best")
model.device, config["device"], model.gpus, config["gpus"] = model_device, model_device, model_gpus, model_gpus
model.to(model_device)
assert model_dict is not None, "No trained model"
# state_dict = model_dict["state_dict"]
if config["model_type"] == "Transformer":
token_embedding = model.lm_encoder.embeddings.word_embeddings # TODO:
return model, token_embedding.cpu()
def get_tokenizer(config, categorical_features, string_features, original_feature_map, use_voted_users_feature = False, num_all_users = 0):
if "custom" not in config["language_model_encoder_name"]:
tokenizer = AutoTokenizer.from_pretrained(config["language_model_encoder_name"], use_fast=True)
else:
debug("Initializing the tokenizer from sbert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", use_fast=True)
debug(original_token_num = len(tokenizer))
new_tokens = ["[SEP]"]
for feat in categorical_features + string_features:
new_tokens.append(f"[{feat}]")
for feat in original_feature_map:
feature_space = len(original_feature_map[feat])
for i in range(feature_space + 1):
new_tokens.append(f"{feat}_{i}")
if use_voted_users_feature:
new_tokens.extend(["[UPVOTED_USERS]", "[DOWNVOTED_USERS]"])
num_added_toks = tokenizer.add_special_tokens({'additional_special_tokens': new_tokens[:25000]})
num_added_toks = tokenizer.add_special_tokens({'additional_special_tokens': new_tokens[25000:]})
debug(latest_token_num = len(tokenizer))
return tokenizer