-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathhubconf.py
163 lines (125 loc) · 7.02 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
from typing import Optional, Tuple
import torch
import numpy as np
from torchvision import transforms
from PIL import Image, ImageOps
from torch.nn.functional import interpolate
dependencies = ["torch", "numpy", "diffusers", "PIL"]
from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline
from stablenormal.pipeline_stablenormal import StableNormalPipeline
from stablenormal.scheduler.heuristics_ddimsampler import HEURI_DDIMScheduler
def pad_to_square(image: Image.Image) -> Tuple[Image.Image, Tuple[int, int], Tuple[int, int, int, int]]:
"""Pad the input image to make it square."""
width, height = image.size
size = max(width, height)
delta_w = size - width
delta_h = size - height
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
padded_image = ImageOps.expand(image, padding)
return padded_image, image.size, padding
def resize_image(image: Image.Image, resolution: int) -> Tuple[Image.Image, Tuple[int, int], Tuple[float, float]]:
"""Resize the image while maintaining aspect ratio and then pad to nearest multiple of 64."""
if not isinstance(image, Image.Image):
raise ValueError("Expected a PIL Image object")
np_image = np.array(image)
height, width = np_image.shape[:2]
scale = resolution / min(height, width)
new_height = int(np.round(height * scale / 64.0)) * 64
new_width = int(np.round(width * scale / 64.0)) * 64
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return resized_image, (height, width), (new_height / height, new_width / width)
def center_crop(image: Image.Image) -> Tuple[Image.Image, Tuple[int, int], Tuple[float, float, float, float]]:
"""Crop the center of the image to make it square."""
width, height = image.size
crop_size = min(width, height)
left = (width - crop_size) / 2
top = (height - crop_size) / 2
right = (width + crop_size) / 2
bottom = (height + crop_size) / 2
cropped_image = image.crop((left, top, right, bottom))
return cropped_image, image.size, (left, top, right, bottom)
class Predictor:
"""Predictor class for Stable Diffusion models."""
def __init__(self, model):
self.model = model
try:
import xformers
self.model.enable_xformers_memory_efficient_attention()
except ImportError:
pass
def to(self, device, dtype=torch.float16):
self.model.to(device, dtype)
return self
@torch.no_grad()
def __call__(self, img: Image.Image, image_resolution=768, mode='stable', preprocess='pad') -> Image.Image:
if img.mode == 'RGBA':
img = img.convert('RGB')
if preprocess == 'pad':
img, original_size, padding_info = pad_to_square(img)
elif preprocess == 'crop':
img, original_size, crop_info = center_crop(img)
else:
raise ValueError("Invalid preprocessing mode. Choose 'pad' or 'crop'.")
img, original_dims, scaling_factors = resize_image(img, image_resolution)
if mode == 'stable':
init_latents = torch.zeros([1, 4, image_resolution // 8, image_resolution // 8],
device="cuda", dtype=torch.float16)
else:
init_latents = None
pipe_out = self.model(img, match_input_resolution=True, latents=init_latents)
pred_normal = (pipe_out.prediction.clip(-1, 1) + 1) / 2
pred_normal = (pred_normal[0] * 255).astype(np.uint8)
pred_normal = Image.fromarray(pred_normal)
new_dims = (int(original_dims[1]), int(original_dims[0])) # reverse the shape (width, height)
pred_normal = pred_normal.resize(new_dims, Image.Resampling.LANCZOS)
if preprocess == 'pad':
left, top, right, bottom = padding_info[0], padding_info[1], original_dims[0] - padding_info[2], original_dims[1] - padding_info[3]
pred_normal = pred_normal.crop((left, top, right, bottom))
return pred_normal
else:
left, top, right, bottom = crop_info
pred_normal_with_bg = Image.new("RGB", original_size)
pred_normal_with_bg.paste(pred_normal, (int(left), int(top)))
return pred_normal_with_bg
def __repr__(self):
return f"Predictor(model={self.model})"
def StableNormal(local_cache_dir: Optional[str] = None, device="cuda:0",
yoso_version='yoso-normal-v0-3', diffusion_version='stable-normal-v0-1') -> Predictor:
"""Load the StableNormal pipeline and return a Predictor instance."""
yoso_weight_path = os.path.join(local_cache_dir if local_cache_dir else "Stable-X", yoso_version)
diffusion_weight_path = os.path.join(local_cache_dir if local_cache_dir else "Stable-X", diffusion_version)
x_start_pipeline = YOSONormalsPipeline.from_pretrained(
yoso_weight_path, trust_remote_code=True, safety_checker=None,
variant="fp16", torch_dtype=torch.float16).to(device)
pipe = StableNormalPipeline.from_pretrained(diffusion_weight_path, trust_remote_code=True, safety_checker=None,
variant="fp16", torch_dtype=torch.float16,
scheduler=HEURI_DDIMScheduler(prediction_type='sample',
beta_start=0.00085, beta_end=0.0120,
beta_schedule="scaled_linear"))
pipe.x_start_pipeline = x_start_pipeline
pipe.to(device)
pipe.prior.to(device, torch.float16)
return Predictor(pipe)
def StableNormal_turbo(local_cache_dir: Optional[str] = None, device="cuda:0", yoso_version='yoso-normal-v1-0') -> Predictor:
"""Load the StableNormal_turbo pipeline for a faster inference."""
yoso_weight_path = os.path.join(local_cache_dir if local_cache_dir else "Stable-X", yoso_version)
pipe = YOSONormalsPipeline.from_pretrained(yoso_weight_path,
trust_remote_code=True, safety_checker=None, variant="fp16",
torch_dtype=torch.float16, t_start=0).to(device)
return Predictor(pipe)
def _test_run():
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input", "-i", type=str, required=True, help="Input image file")
parser.add_argument("--output", "-o", type=str, required=True, help="Output image file")
parser.add_argument("--mode", type=str, default="StableNormal_turbo", help="Mode of operation")
args = parser.parse_args()
predictor_func = StableNormal_turbo if args.mode == "StableNormal_turbo" else StableNormal
predictor = predictor_func(local_cache_dir='./weights', device="cuda:0")
image = Image.open(args.input)
with torch.inference_mode():
normal_image = predictor(image)
normal_image.save(args.output)
if __name__ == "__main__":
_test_run()