- 1. Description
- 2. Current Support Platform
- 3. Pretrained Model
- 4. Convert to RKNN
- 5. Python Demo
- 6. Android Demo
- 7. Linux Demo
- 8. Expected Results
The model used in this example comes from the following open source projects:
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/configs/ppyoloe
- To export the model matching this demo requirement, refer here to export ONNX model.
RK3566, RK3568, RK3588, RK3562, RK1808, RV1109, RV1126
Download link:
./ppyoloe_s.onnx
./ppyoloe_m.onnx
Download with shell command:
cd model
./download_model.sh
Usage:
cd python
python convert.py <onnx_model> <TARGET_PLATFORM> <dtype(optional)> <output_rknn_path(optional)>
# such as:
python convert.py ../model/ppyoloe_s.onnx rk3588
# output model will be saved as ../model/ppyoloe.rknn
Description:
<onnx_model>
: Specify ONNX model path.<TARGET_PLATFORM>
: Specify NPU platform name. Support Platform refer [here](#2 Current Support Platform).<dtype>(optional)
: Specify asi8
,u8
orfp
.i8
/u8
for doing quantization,fp
for no quantization. Default isi8
.<output_rknn_path>(optional)
: Specify save path for the RKNN model, default save in the same directory as ONNX model with nameppyoloe.rknn
Usage:
cd python
# Inference with PyTorch model or ONNX model
python ppyoloe.py --model_path <pt_model/onnx_model> --img_show
# Inference with RKNN model
python ppyoloe.py --model_path <rknn_model> --target <TARGET_PLATFORM> --img_show
Description:
-
<TARGET_PLATFORM>
: Specify NPU platform name. Support Platform refer [here](#2 Current Support Platform). -
<pt_model / onnx_model / rknn_model>
: Specify the model path.
Note: RK1808, RV1109, RV1126 does not support Android.
Please refer to the Compilation_Environment_Setup_Guide document to setup a cross-compilation environment and complete the compilation of C/C++ Demo.
Note: Please replace the model name with ppyoloe
.
With device connected via USB port, push demo files to devices:
adb root
adb remount
adb push install/<TARGET_PLATFORM>_android_<ARCH>/rknn_ppyoloe_demo/ /data/
adb shell
cd /data/rknn_ppyoloe_demo
export LD_LIBRARY_PATH=./lib
./rknn_ppyoloe_demo model/ppyoloe.rknn model/bus.jpg
-
After running, the result was saved as
out.png
. To check the result on host PC, pull back result referring to the following command:adb pull /data/rknn_ppyoloe_demo/out.png
Please refer to the Compilation_Environment_Setup_Guide document to setup a cross-compilation environment and complete the compilation of C/C++ Demo.
Note: Please replace the model name with ppyoloe
.
- If device connected via USB port, push demo files to devices:
adb push install/<TARGET_PLATFORM>_linux_<ARCH>/rknn_ppyoloe_demo/ /userdata/
- For other boards, use
scp
or other approaches to push all files underinstall/<TARGET_PLATFORM>_linux_<ARCH>/rknn_ppyoloe_demo/
touserdata
.
adb shell
cd /userdata/rknn_ppyoloe_demo
export LD_LIBRARY_PATH=./lib
./rknn_ppyoloe_demo model/ppyoloe.rknn model/bus.jpg
-
After running, the result was saved as
out.png
. To check the result on host PC, pull back result referring to the following command:adb pull /userdata/rknn_ppyoloe_demo/out.png
This example will print the labels and corresponding scores of the test image detect results, as follows:
person @ (108 234 225 536) 0.947
person @ (477 233 561 519) 0.936
person @ (211 240 283 512) 0.925
bus @ (86 135 552 445) 0.921
person @ (79 326 124 516) 0.489
handbag @ (260 338 281 413) 0.406
person @ (103 243 116 285) 0.253
- Note: Different platforms, different versions of tools and drivers may have slightly different results.