-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
198 lines (165 loc) · 8.26 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import os
import math
import copy
import time
from torch import nn, Tensor
from utils import write_to_log
from dataloader import *
from transformer_model import generate_square_subsequent_mask
from transformer_model import TransformerModel
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from scheduler import ScheduledOptim
class Trainer():
"""A class that handles different phases of training the model.
"""
def __init__(self, model: nn.Module, train_data, val_data, test_data, args) -> None:
self.model = model.train() # turn on train mode
self.d_model = self.model.d_model
self.train_data = train_data
self.val_data = val_data
self.test_data = test_data
self.log_interval = args.log_interval
self.criterion = nn.CrossEntropyLoss(label_smoothing=0.1) #reduction="sum",
self.lr = args.lr
self.ntokens = args.ntokens
self.bptt = args.bptt
self.num_batches = len(self.train_data) // args.bptt #Truncated Backpropagation Through Time
self.train_from = args.train_from
self.model_save_dir = args.model_save_dir
self.logs_dir = args.logs_dir
self.mode = args.atten_type
self.optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
# both multihead and multilinear versions use adam but the loss explodes if we use it (unless small lr is used)
# self.optimizer = torch.optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.98), eps=1e-9, weight_decay=0,amsgrad=True)
if args.train_from != None:
checkpoint = torch.load(args.train_from)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.train()
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.current_epoch = checkpoint['epoch']
print('>>> successfully loaded the model from checkpoint.')
else:
self.current_epoch = 1
# what sort of scheduling should we use, given that we can't train for very long?
# self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, 4000.0, gamma=0.95, verbose=True)
self.scheduler = ScheduledOptim(self.optimizer,self.lr,self.d_model,n_warmup_steps=10,n_steps=self.current_epoch)
if args.train_from != None:
self.scheduler.step()
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
st='The model has {} parameters.\n'.format(pytorch_total_params)
write_to_log(self.logs_dir,'training_log.log',st)
pass
def step(self, epoch) -> None:
"""One step of training
Args:
epoch (int): epoch number
Returns:
float: current loss
"""
total_loss = 0.
cur_loss = 0
start_time = time.time()
src_mask = generate_square_subsequent_mask(self.bptt).to(device)
for batch, i in enumerate(range(0, self.train_data.size(0) - 1, self.bptt)):
data, targets = get_batch(self.train_data, i, self.bptt)
batch_size = data.size(0)
# if batch_size != self.bptt: # only on last batch
# src_mask = src_mask[:batch_size, :batch_size]
output = self.model(data, src_mask)
loss = self.criterion(output.view(-1, self.ntokens), targets)
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5)
self.optimizer.step()
total_loss += loss.item()
if batch % self.log_interval == 0 and batch > 0:
lr = self.scheduler.get_last_lr()[-1]
ms_per_batch = (time.time() - start_time) * 1000 / self.log_interval
cur_loss = total_loss / self.log_interval
ppl = math.exp(cur_loss)
st = f'| epoch {epoch:3d} | {batch:5d}/{self.num_batches:5d} batches | 'f'lr {lr:02.2f} | ms/batch {ms_per_batch:5.2f} | 'f'loss {cur_loss:5.2f} | ppl {ppl:8.2f}'
print(st)
write_to_log(self.logs_dir,'training_log.log',st+'\n')
if device.type != 'cpu':
# Getting all memory using os.popen()
total_memory, used_memory, free_memory = map(
int, os.popen('free -t -m').readlines()[-1].split()[1:])
# Memory usage
st = "RAM memory used {} percent.".format( round((used_memory/total_memory) * 100, 2) )
write_to_log(self.logs_dir,'training_ram.log',st+'\n')
allocated_mem = torch.cuda.memory_allocated(0)
total_mem = torch.cuda.get_device_properties(0).total_memory
# free_mem = torch.cuda.memory_reserved(0)
st = "Total GPU memory {}, {} is allocated and {} percent is used".format(total_mem,allocated_mem,100*allocated_mem/total_mem)
write_to_log(self.logs_dir,'training_gpu.log',st+'\n')
total_loss = 0
start_time = time.time()
return cur_loss
def evaluate(self, model, eval_data: Tensor) -> float:
"""Method that does evaluate the given model on the evaluation dataset
Args:
model (nn.Module): target model
eval_data (Tensor): evaluation dataset
Returns:
float: loss
"""
model.eval() # turn on evaluation mode
total_loss = 0.
src_mask = generate_square_subsequent_mask(self.bptt).to(device)
with torch.no_grad():
for i in range(0, eval_data.size(0) - 1, self.bptt):
data, targets = get_batch(eval_data, i, self.bptt)
batch_size = data.size(0)
# if batch_size != self.bptt:
# src_mask = src_mask[:batch_size, :batch_size]
output = model(data, src_mask)
output_flat = output.view(-1, self.ntokens)
total_loss += batch_size * self.criterion(output_flat, targets).item()
return total_loss / (len(eval_data) - 1)
def end_of_training(self, best_model):
"""The end of training actions
Args:
best_model (nn.Module): best perfroming model
"""
# for evaluation
test_loss = self.evaluate(best_model,self.test_data)
test_ppl = math.exp(test_loss)
st = '=' * 89+f'| End of training | test loss {test_loss:5.2f} | '+f'test ppl {test_ppl:8.2f}'+'=' * 89
write_to_log(self.logs_dir,'training_log.log',st)
print(st)
def train(self, epochs: int):
"""traines the model by executing and managing epochs
Args:
epochs (int): number of epoch used for training
Returns:
nn.Module: Best performing model
"""
best_val_loss = float('inf')
best_model = None
for epoch in range(self.current_epoch, epochs + 1):
epoch_start_time = time.time()
loss = self.step(epoch)
val_loss = self.evaluate(self.model, self.val_data)
val_ppl = math.exp(val_loss)
elapsed = time.time() - epoch_start_time
# More information about handling model weights
# https://pytorch.org/tutorials/beginner/saving_loading_models.html
if not os.path.exists(self.model_save_dir):
os.mkdir(self.model_save_dir)
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'loss': loss,
}, os.path.join(self.model_save_dir,self.mode+'_epoch{}.pt'.format(epoch)) )
print('>>> successfully saved the model to checkpoint.')
st = '-'*89+'\n'+f'| end of epoch {epoch:3d} | time: {elapsed:5.2f}s | '+f'valid loss {val_loss:5.2f} | valid ppl{val_ppl:8.2f}'+'\n'+'-'*89
write_to_log(self.logs_dir,'training_log.log',st)
print(st)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = copy.deepcopy(self.model)
self.scheduler.step()
self.end_of_training(best_model)
return best_model