-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscheduler.py
43 lines (32 loc) · 1.46 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class ScheduledOptim():
'''A simple wrapper class for learning rate scheduling. This is exactly the scheduler used by attention is all you need repository.
See https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/132907dd272e2cc92e3c10e6c4e783a87ff8893d/transformer/Optim.py#L4
'''
def __init__(self, optimizer, lr_mul, d_model, n_warmup_steps, n_steps=0):
self._optimizer = optimizer
self.lr_mul = lr_mul
self.d_model = d_model
self.n_warmup_steps = n_warmup_steps
self.n_steps = n_steps
self.learning_rates = [lr_mul]
def step(self):
"Step with the inner optimizer"
self._update_learning_rate()
self._optimizer.step()
def zero_grad(self):
"Zero out the gradients with the inner optimizer"
self._optimizer.zero_grad()
def _get_lr_scale(self):
d_model = self.d_model
n_steps, n_warmup_steps = self.n_steps, self.n_warmup_steps
return (d_model ** -0.5) * min(n_steps ** (-0.5), n_steps * n_warmup_steps ** (-1.5))
def get_last_lr(self):
return self.learning_rates
def _update_learning_rate(self):
''' Learning rate scheduling per step '''
self.n_steps += 1
lr = self.lr_mul * self._get_lr_scale()
print('>>> scheduler: learning rate updated to: ',lr)
self.learning_rates.append(lr)
for param_group in self._optimizer.param_groups:
param_group['lr'] = lr