-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathtest.py
89 lines (69 loc) · 2.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import sys
import numpy as np
import imp
import time
import theano
from lasagne.layers import get_output
from data_loader import load_data
from metrics import numpy_metrics, theano_metrics
def test(config_path, weight_path):
"""
This function builds the model defined in config_path and restores the weights defined in weight_path. It then
reports the jaccard and global accuracy metrics on the CamVid test set.
"""
cf = imp.load_source('cf', config_path)
###############
# Load data #
###############
print('-' * 75)
# Load config file
# Load data
print('Loading data')
batch_size = 10
_, _, iterator = load_data(cf.dataset, batch_size=batch_size)
n_classes = iterator.get_n_classes()
_, n_rows, n_cols = iterator.data_shape
void_labels = iterator.get_void_labels()
###################
# Compile model #
###################
# Print summary
net = cf.net
net.restore(weight_path)
# Compile test functions
prediction = get_output(net.output_layer, deterministic=True, batch_norm_use_averages=False)
metrics = theano_metrics(prediction, net.target_var, n_classes, void_labels)
print('Compiling functions')
start_time_compilation = time.time()
f = theano.function([net.input_var, net.target_var], metrics)
print('Compilation took {:.3f} seconds'.format(time.time() - start_time_compilation))
###################
# Main loop #
###################
n_batches = iterator.get_n_batches()
I_tot = np.zeros(n_classes)
U_tot = np.zeros(n_classes)
acc_tot = 0.
n_imgs = 0
for i in range(n_batches):
X, Y = iterator.next()
I, U, acc = f(X, Y[:, None, :, :])
I_tot += I
U_tot += U
acc_tot += acc * batch_size
n_imgs += batch_size
# # Progression bar ( < 74 characters)
sys.stdout.write('\r[{}%]'.format(int(100. * (i + 1) / n_batches)))
sys.stdout.flush()
labels = ['sky', 'building', 'column_pole', 'road', 'sidewalk', 'tree', 'sign', 'fence', 'car', 'pedestrian',
'byciclist']
for label, jacc in zip(labels, I_tot / U_tot):
print('{} :\t{:.4f}'.format(label, jacc))
print 'Mean Jaccard', np.mean(I_tot / U_tot)
print 'Global accuracy', acc_tot / n_imgs
# To visualize an image : np.reshape(np.argmax(g(X), axis = 1), (360, 480))
# with g = theano.function([net.input_var], prediction)
if __name__ == '__main__':
config_path = 'config/FC-DenseNet103.py'
weight_path = 'weights/FC-DenseNet103_weights.npz'
test(config_path, weight_path)