-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSudoku.java
615 lines (551 loc) · 24.1 KB
/
Sudoku.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Shivan Kaul Sahib
import java.util.*;
import java.io.*;
class Sudoku
{
/* SIZE is the size parameter of the Sudoku puzzle, and N is the square of the size. For
* a standard Sudoku puzzle, SIZE is 3 and N is 9. */
int SIZE, N;
/* The grid contains all the numbers in the Sudoku puzzle. Numbers which have
* not yet been revealed are stored as 0. */
int Grid[][];
/* The solve() method should remove all the unknown characters ('x') in the Grid
* and replace them with the numbers from 1-9 that satisfy the Sudoku puzzle. */
/************************************************************************************************************************************************************/
// DOCUMENTATION -- ALGORITHM X, EXACT COVER PROBLEM AND DANCING LINKS IMPLEMENTATION
// My class AlgorithmXSolver takes an unsolved Sudoku puzzled as int[][] (the Grid) and outputs the solved Sudoku puzzle.
// I convert the Sudoku puzzle into an Exact Cover problem, solve that using the Dancing Links algorithm as described by Dr Donald Knuth,
// and then get the solution and map it onto the Grid.
// EXACT COVER AND DANCING LINKS
/*An Exact Cover problem can be represented as a sparse matrix where the rows represent possibilities, and the columns
* represent constraints. Every row will have a 1 in every column (constraint) that it satisfies, and a 0 otherwise. A set
* of rows that together have exactly one 1 for each column can be said to be the solution set of the Exact Cover problem. Now,
* Dancing Links is an efficient way of solving such a problem. The idea is to take the Exact Cover matrix and put it into a
* a toroidal circular doubly-linked list. Thus, every node in such a list will be connected to 4 other nodes and the list will be circular
* i.e. the last element will point to the first one. In the case of Dancing Links, for every column of the linked list, there is a
* special ColumnNode (which extends the normal Node) that contains identifying information about that particular column as well as
* the size of the column i.e. the number of nodes in it. Each Node points to four other nodes as mentioned, as well as its ColumnNode.
*
// SOLVING
* To solve the Exact Cover problem i.e. come up with a set of rows that contain exactly one 1 for every column/constraint, we search
* recursively using the principles of backtracking. It chooses a column, 'covers' it i.e. removes that column from the linked list completely,
* store it in a solution list (which I implemented using an ArrayList), and then try to recursively solve the rest of the table. If
* it's not possible, backtrack, restore the column (uncover it), and try a different column. For this assignment I assumed that the
* Sudoku problem being provided has a solution.
*
// SUDOKU APPLICATION
* For Sudoku, there are 4 constraints. Only 1 instance of a number can be in a row, in a column, and in a block. In addition, there can
* be only one number in a cell. The rows represent every single possible position for every number. Every row would have 4 1s, representing
* one possible place for the number (satisfying all 4 constraints).
* To implement my solution, I created a class AlgorithmXSolver that contained all the methods and the data structures required to solve
* the problem. I instantiated an instance of this class in the solve() method, and then ran it.
* I had to convert the given Grid into a sparse matrix, accounting for the given clues (filled in values). Then, this matrix
* is converted into a linked list as talked about above and solved using the Dancing Links approach. We store
* possible solutions in an ArrayList 'solution'. Once we get a set of Nodes that solves the problem, we take the solution list
* and iterate over every single Node and map the solution over the original Grid.
*
// TESTING
* I tested my solver using the puzzles provided by Prof Blanchette by passing the sudoku text file as the args[] variable
* of the main method. I did this in Eclipse by editing the Run Configuration (and providing the full path to the text file
* in the Arguments tab).
*/
// CREDITS:
// (1) Dr Donald Knuth's original paper (http://www.ocf.berkeley.edu/~jchu/publicportal/sudoku/0011047.pdf) on Dancing Links
// (2) Jonathan Chu's paper for the pseudocode for the Dancing Links implementation (http://www.ocf.berkeley.edu/~jchu/publicportal/sudoku/sudoku.paper.html)
// (3) The Wikipedia pages on Dancing Links, Exact Cover problem, Algorithm X for helping to understand Knuth's paper
// (4) This StackOverflow discussion to intuitively understand the Dancing Links implementation: http://stackoverflow.com/questions/1518335/the-dancing-links-algorithm-an-explanation-that-is-less-explanatory-but-more-o
// (5) Xi Chen's implementation in C to get an understanding of the data structures (http://uaa.wtf.im/?page_id=27)
// (6) Alex Rudnick's implementation in Python for getting ideas on how to implement some of the methods (https://code.google.com/p/narorumo/wiki/SudokuDLX)
/************************************************************************************************************************************************************/
public void solve()
{
AlgorithmXSolver solver= new AlgorithmXSolver();
solver.run(Grid);
}
public class AlgorithmXSolver
{
private ColumnNode root = null; // this is the starting node of the linked list
private ArrayList solution = new ArrayList(); // a raw Array List for dynamically storing the solutions. It slows things
// down a bit, but this how I started and ran out of time before I could come up with a more efficient way to do it.
// the run method. We pass the Grid[][] as input
private void run(int[][] initialMatrix)
{
byte[][] matrix = createMatrix(initialMatrix); // create the sparse matrix. We use the type byte to speed things up. I tried using
// using all the primitive types, expecting the same results in terms
// of speed; the only performance boost should have been in terms of space.
// Yet, there was a marked difference in the running times. Hence, I used byte[][] whenever possible.
ColumnNode doubleLinkedList = createDoubleLinkedLists(matrix); // create the circular doubly-linked toroidal list
search(0); // start the Dancing Links process of searching and covering and uncovering recursively
}
// data structures
class Node // we define a node that knows about four other nodes, as well as its column head
{
Node left;
Node right;
Node up;
Node down;
ColumnNode head;
}
class ColumnNode extends Node // a special kind of node that contains information about that column
{
int size = 0;
ColumnID info;
}
class ColumnID // helps us store information about that column
{
int constraint = -1;
int number = -1;
int position = -1;
}
// create a sparse matrix for Grid
private byte[][] createMatrix(int[][] initialMatrix)
{
int[][] clues = null; // stores the numbers that are already given on the board i.e. the 'clues'
ArrayList cluesList = new ArrayList(); // the list used to get the clues. Because we use a raw ArrayList, we later have to cast to int[] before storing in clues
int counter = 0;
for(int r = 0; r < N; r++) // iterates over the rows of Grid
{
for(int c = 0; c < N; c++) // iterates over the columns of Grid
{
if(initialMatrix[r][c] > 0) // if the number on the Grid is != 0 (the number is a clue and not a blank space to solved for), then store it
{
cluesList.add(new int[]{initialMatrix[r][c],r,c}); // store the number, the row number and the column number
counter++;
}
}
}
clues = new int[counter][]; // store the clues once we've gotten them
for(int i = 0; i < counter; i++)
{
clues[i] = (int[])cluesList.get(i);
}
// Now, we build our sparse matrix
byte[][] matrix = new byte[N*N*N][4*N*N];
// The rows of our matrix represent all the possibilities, whereas the columns represent the constraints.
// Hence, there are N^3 rows (N rows * N columns * N numbers), and N^2 * 4 columns (N rows * N columns * 4 constraints)
// iterate over all the possible digits d
for(int d = 0; d < N; d++)
{
// iterate over all the possible rows r
for(int r = 0; r < N; r++)
{
// iterator over all the possible columns c
for(int c = 0; c < N; c++)
{
if(!filled(d,r,c,clues)) // if the cell is not already filled
{
// this idea for this way of mapping the sparse matrix is taken from the Python implementation: https://code.google.com/p/narorumo/wiki/SudokuDLX
int rowIndex = c + (N * r) + (N * N * d);
// there are four 1s in each row, one for each constraint
int blockIndex = ((c / SIZE) + ((r / SIZE) * SIZE));
int colIndexRow = 3*N*d+r;
int colIndexCol = 3*N*d+N+c;
int colIndexBlock = 3*N*d+2*N+blockIndex;
int colIndexSimple = 3*N*N+(c+N*r);
// fill in the 1's
matrix[rowIndex][colIndexRow] = 1;
matrix[rowIndex][colIndexCol] = 1;
matrix[rowIndex][colIndexBlock] = 1;
matrix[rowIndex][colIndexSimple] = 1;
}
}
}
}
return matrix;
}
// check if the cell to be filled is already filled with a digit. The idea for this is credited to Alex Rudnick as cited above
private boolean filled(int digit, int row, int col, int[][] prefill) {
boolean filled = false;
if(prefill != null)
{
for(int i = 0; i < prefill.length; i++)
{
int d = prefill[i][0]-1;
int r = prefill[i][1];
int c = prefill[i][2];
// calculate the block indices
int blockStartIndexCol = (c/SIZE)*SIZE;
int blockEndIndexCol = blockStartIndexCol + SIZE;
int blockStartIndexRow = (r/SIZE)*SIZE;
int blockEndIndexRow = blockStartIndexRow + SIZE;
if(d != digit && row == r && col == c) {
filled = true;
} else if((d == digit) && (row == r || col == c) && !(row == r && col == c))
{
filled = true;
} else if((d == digit) && (row > blockStartIndexRow) && (row < blockEndIndexRow) && (col > blockStartIndexCol) && (col < blockEndIndexCol) && !(row == r && col == c))
{
filled = true;
}
}
}
return filled;
}
// the method to convert the sparse matrix Exact Cover problem to a doubly-linked list, which will allow us to later
// perform our Dancing Links magic.
// Given that we have 4 constraints for Sudoku, I created a new class ColumnID that is a property of all columns.
// This ColumnID property contains the information about the constraint and allows us to identify which constraint position
// we're on, as well as the row and the column and the digit
// the first constraint is row constraint, the second is col, the third is block, and the fourth is cell.
// Every constraint contains N^2 columns for every cell
// The idea for this is taken from Jonathan Chu's explanation (cited above)
private ColumnNode createDoubleLinkedLists(byte[][] matrix)
{
root = new ColumnNode(); // the root is used as an entry-way to the linked list i.e. we access the list through the root
// create the column heads
ColumnNode curColumn = root;
for(int col = 0; col < matrix[0].length; col++) // getting the column heads from the sparse matrix and filling in the information about the
// constraints. We iterate for all the column heads, thus going through all the items in the first row of the sparse matrix
{
// We create the ColumnID that will store the information. We will later map this ID to the current curColumn
ColumnID id = new ColumnID();
if(col < 3*N*N)
{
// identifying the digit
int digit = (col / (3*N)) + 1;
id.number = digit;
// is it for a row, column or block?
int index = col-(digit-1)*3*N;
if(index < N)
{
id.constraint = 0; // we're in the row constraint
id.position = index;
} else if(index < 2*N)
{
id.constraint = 1; // we're in the column constraint
id.position = index-N;
} else
{
id.constraint = 2; // we're in the block constraint
id.position = index-2*N;
}
} else
{
id.constraint = 3; // we're in the cell constraint
id.position = col - 3*N*N;
}
curColumn.right = new ColumnNode();
curColumn.right.left = curColumn;
curColumn = (ColumnNode)curColumn.right;
curColumn.info = id; // the information about the column is set to the new column
curColumn.head = curColumn;
}
curColumn.right = root; // making the list circular i.e. the right-most ColumnHead is linked to the root
root.left = curColumn;
// Once all the ColumnHeads are set, we iterate over the entire matrix
// Iterate over all the rows
for(int row = 0; row < matrix.length; row++)
{
// iterator over all the columns
curColumn = (ColumnNode)root.right;
Node lastCreatedElement = null;
Node firstElement = null;
for(int col = 0; col < matrix[row].length; col++) {
if(matrix[row][col] == 1) // i.e. if the sparse matrix element has a 1 i.e. there is a clue here i.e. we were given this value in the Grid
{
// create a new data element and link it
Node colElement = curColumn;
while(colElement.down != null)
{
colElement = colElement.down;
}
colElement.down = new Node();
if(firstElement == null) {
firstElement = colElement.down;
}
colElement.down.up = colElement;
colElement.down.left = lastCreatedElement;
colElement.down.head = curColumn;
if(lastCreatedElement != null)
{
colElement.down.left.right = colElement.down;
}
lastCreatedElement = colElement.down;
curColumn.size++;
}
curColumn = (ColumnNode)curColumn.right;
}
// link the first and the last element, again making it circular
if(lastCreatedElement != null)
{
lastCreatedElement.right = firstElement;
firstElement.left = lastCreatedElement;
}
}
curColumn = (ColumnNode)root.right;
// link the last column elements with the corresponding columnHeads
for(int i = 0; i < matrix[0].length; i++)
{
Node colElement = curColumn;
while(colElement.down != null)
{
colElement = colElement.down;
}
colElement.down = curColumn;
curColumn.up = colElement;
curColumn = (ColumnNode)curColumn.right;
}
return root; // We've made the doubly-linked list; we return the root of the list
}
// the searching algorithm. Pseudo-code from Jonathan Chu's paper (cited above).
private void search(int k)
{
if(root.right == root) // if we've run out of columns, we've solved the exact cover problem!
{
mapSolvedToGrid(); // map the solved linked list to the grid
return;
}
ColumnNode c = choose(); // we choose a column to cover
cover(c);
Node r = c.down;
while(r != c)
{
if(k < solution.size())
{
solution.remove(k); // if we had to enter this loop again
}
solution.add(k,r); // the solution is added
Node j = r.right;
while(j != r) {
cover(j.head);
j = j.right;
}
search(k+1); //recursively search
Node r2 = (Node)solution.get(k);
Node j2 = r2.left;
while(j2 != r2) {
uncover(j2.head);
j2 = j2.left;
}
r = r.down;
}
uncover(c);
}
// this allows us to map the solved linked list to the Grid
private void mapSolvedToGrid()
{
int[] result = new int[N*N];
for(Iterator it = solution.iterator(); it.hasNext();) // we use Iterators to iterate over every single element of the ArrayList
// we stop iterating once we run out of elements in the list
{
// for the first step, we pull all the values of the solved Sudoku board from the linked list to an array result[] in order
int number = -1; // initialize number and cell number to be a value that can't occur
int cellNo = -1;
Node element = (Node)it.next();
Node next = element;
do {
if (next.head.info.constraint == 0)
{ // if we're in the row constraint
number = next.head.info.number;
}
else if (next.head.info.constraint == 3)
{ // if we're in the cell constraint
cellNo = next.head.info.position;
}
next = next.right;
} while(element != next);
result[cellNo] = number; // feed values into result[]
}
// for the second step, we feed all the values of the array result[] (in order) to the Grid
int resultCounter=0;
for (int r=0; r<N; r++) // iterates for the rows
{
for (int c=0; c<N; c++) // iterates for the columns
{
Grid[r][c]=result[resultCounter];
resultCounter++;
}
}
}
private ColumnNode choose() {
// According to Donald Knuth's paper, it is most efficient to choose the column with the smallest possible size.
// That is what we do.
ColumnNode rightOfRoot = (ColumnNode)root.right; // we cast the node to the right of the root to be a ColumnNode
ColumnNode smallest = rightOfRoot;
while(rightOfRoot.right != root)
{
rightOfRoot = (ColumnNode)rightOfRoot.right;
if(rightOfRoot.size < smallest.size) // choosing which column has the lowest size
{
smallest = rightOfRoot;
}
}
return smallest;
}
// covers the column; used as a helper method for the search method. Pseudo code by Jonathan Chu (credited above)
private void cover(Node column)
{
// we remove the column head by remapping the node to its left to the node to its right; thus, the linked list no longer contains
// a way to access the column head. Later when we uncover it, we can easily do so by just reversing this process.
column.right.left = column.left;
column.left.right = column.right;
// We also have to do this covering for all the rows in the column
Node curRow = column.down;
while(curRow != column) // because it's circular!
{
Node curNode = curRow.right;
while(curNode != curRow)
{
curNode.down.up = curNode.up;
curNode.up.down = curNode.down;
curNode.head.size--;
curNode = curNode.right;
}
curRow = curRow.down;
}
}
// uncovers the column i.e. adds back all the nodes of the column to the linked list
private void uncover(Node column)
{
Node curRow = column.up;
while(curRow != column) // do this for all the nodes of the column to be uncovered first, and then reinsert the columnHead
{
Node curNode = curRow.left;
while(curNode != curRow)
{
curNode.head.size++;
curNode.down.up = curNode; // reinserts node into linked list
curNode.up.down = curNode;
curNode = curNode.left;
}
curRow = curRow.up;
}
column.right.left = column; // reinserts column head
column.left.right = column;
}
}
/*****************************************************************************/
/* NOTE: YOU SHOULD NOT HAVE TO MODIFY ANY OF THE FUNCTIONS BELOW THIS LINE. */
/*****************************************************************************/
/* Default constructor. This will initialize all positions to the default 0
* value. Use the read() function to load the Sudoku puzzle from a file or
* the standard input. */
public Sudoku( int size )
{
SIZE = size;
N = size*size;
Grid = new int[N][N];
for( int i = 0; i < N; i++ )
for( int j = 0; j < N; j++ )
Grid[i][j] = 0;
}
/* readInteger is a helper function for the reading of the input file. It reads
* words until it finds one that represents an integer. For convenience, it will also
* recognize the string "x" as equivalent to "0". */
static int readInteger( InputStream in ) throws Exception
{
int result = 0;
boolean success = false;
while( !success ) {
String word = readWord( in );
try {
result = Integer.parseInt( word );
success = true;
} catch( Exception e ) {
// Convert 'x' words into 0's
if( word.compareTo("x") == 0 ) {
result = 0;
success = true;
}
// Ignore all other words that are not integers
}
}
return result;
}
/* readWord is a helper function that reads a word separated by white space. */
static String readWord( InputStream in ) throws Exception
{
StringBuffer result = new StringBuffer();
int currentChar = in.read();
String whiteSpace = " \t\r\n";
// Ignore any leading white space
while( whiteSpace.indexOf(currentChar) > -1 ) {
currentChar = in.read();
}
// Read all characters until you reach white space
while( whiteSpace.indexOf(currentChar) == -1 ) {
result.append( (char) currentChar );
currentChar = in.read();
}
return result.toString();
}
/* This function reads a Sudoku puzzle from the input stream in. The Sudoku
* grid is filled in one row at at time, from left to right. All non-valid
* characters are ignored by this function and may be used in the Sudoku file
* to increase its legibility. */
public void read( InputStream in ) throws Exception
{
for( int i = 0; i < N; i++ ) {
for( int j = 0; j < N; j++ ) {
Grid[i][j] = readInteger( in );
}
}
}
/* Helper function for the printing of Sudoku puzzle. This function will print
* out text, preceded by enough ' ' characters to make sure that the printint out
* takes at least width characters. */
void printFixedWidth( String text, int width )
{
for( int i = 0; i < width - text.length(); i++ )
System.out.print( " " );
System.out.print( text );
}
/* The print() function outputs the Sudoku grid to the standard output, using
* a bit of extra formatting to make the result clearly readable. */
public void print()
{
// Compute the number of digits necessary to print out each number in the Sudoku puzzle
int digits = (int) Math.floor(Math.log(N) / Math.log(10)) + 1;
// Create a dashed line to separate the boxes
int lineLength = (digits + 1) * N + 2 * SIZE - 3;
StringBuffer line = new StringBuffer();
for( int lineInit = 0; lineInit < lineLength; lineInit++ )
line.append('-');
// Go through the Grid, printing out its values separated by spaces
for( int i = 0; i < N; i++ ) {
for( int j = 0; j < N; j++ ) {
printFixedWidth( String.valueOf( Grid[i][j] ), digits );
// Print the vertical lines between boxes
if( (j < N-1) && ((j+1) % SIZE == 0) )
System.out.print( " |" );
System.out.print( " " );
}
System.out.println();
// Print the horizontal line between boxes
if( (i < N-1) && ((i+1) % SIZE == 0) )
System.out.println( line.toString() );
}
}
/* The main function reads in a Sudoku puzzle from the standard input,
* unless a file name is provided as a run-time argument, in which case the
* Sudoku puzzle is loaded from that file. It then solves the puzzle, and
* outputs the completed puzzle to the standard output. */
public static void main( String args[] ) throws Exception
{
InputStream in;
if( args.length > 0 )
in = new FileInputStream( args[0] );
else
in = System.in;
// The first number in all Sudoku files must represent the size of the puzzle. See
// the example files for the file format.
int puzzleSize = readInteger( in );
if( puzzleSize > 100 || puzzleSize < 1 ) {
System.out.println("Error: The Sudoku puzzle size must be between 1 and 100.");
System.exit(-1);
}
Sudoku s = new Sudoku( puzzleSize );
// read the rest of the Sudoku puzzle
s.read( in );
// Solve the puzzle. We don't currently check to verify that the puzzle can be
// successfully completed. You may add that check if you want to, but it is not
// necessary.
long startTime = System.currentTimeMillis(); // test
s.solve();
long endTime = System.currentTimeMillis(); // test
System.out.println(endTime-startTime); // test
// s.solve();
// Print out the (hopefully completed!) puzzle
s.print();
}
}