forked from pmcheng/rsna-pneumonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
executable file
·378 lines (299 loc) · 12.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""Utility functions"""
import os
import sys
import numpy as np
import pydicom
from PIL import Image
sys.path.append("keras-retinanet")
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
def dicom_to_jpg(in_file, out_file, out_size):
""" Convert dicom file to jpg with specified size """
ds = pydicom.read_file(in_file)
size = (ds.Columns, ds.Rows)
mode = 'L'
im = Image.frombuffer(mode, size, ds.pixel_array,
"raw", mode, 0, 1).convert("L")
im = im.resize((out_size, out_size), resample=Image.BICUBIC)
im.save(out_file, quality=95)
def iou(box1, box2):
"""
From Yicheng Chen's "Mean Average Precision Metric"
https://www.kaggle.com/chenyc15/mean-average-precision-metric
helper function to calculate IoU
"""
x11, y11, x12, y12 = box1
x21, y21, x22, y22 = box2
w1, h1 = x12-x11, y12-y11
w2, h2 = x22-x21, y22-y21
area1, area2 = w1 * h1, w2 * h2
xi1, yi1, xi2, yi2 = max([x11, x21]), max(
[y11, y21]), min([x12, x22]), min([y12, y22])
if xi2 <= xi1 or yi2 <= yi1:
return 0
else:
intersect = (xi2-xi1) * (yi2-yi1)
union = area1 + area2 - intersect
return intersect / union
def map_iou(boxes_true, boxes_pred, scores, thresholds=[0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75]):
"""
From Yicheng Chen's "Mean Average Precision Metric"
https://www.kaggle.com/chenyc15/mean-average-precision-metric
Mean average precision at differnet intersection over union (IoU) threshold
input:
boxes_true: Mx4 numpy array of ground true bounding boxes of one image.
bbox format: (x1, y1, w, h)
boxes_pred: Nx4 numpy array of predicted bounding boxes of one image.
bbox format: (x1, y1, w, h)
scores: length N numpy array of scores associated with predicted bboxes
thresholds: IoU shresholds to evaluate mean average precision on
output:
map: mean average precision of the image
"""
# According to the introduction, images with no ground truth bboxes will not be
# included in the map score unless there is a false positive detection (?)
# return None if both are empty, don't count the image in final evaluation (?)
if len(boxes_true) == 0 and len(boxes_pred) == 0:
return None
assert boxes_true.shape[1] == 4 or boxes_pred.shape[1] == 4, "boxes should be 2D arrays with shape[1]=4"
if len(boxes_pred):
assert len(scores) == len(
boxes_pred), "boxes_pred and scores should be same length"
# sort boxes_pred by scores in decreasing order
boxes_pred = boxes_pred[np.argsort(scores)[::-1], :]
map_total = 0
# loop over thresholds
for t in thresholds:
matched_bt = set()
tp, fn = 0, 0
for i, bt in enumerate(boxes_true):
matched = False
for j, bp in enumerate(boxes_pred):
miou = iou(bt, bp)
if miou >= t and not matched and j not in matched_bt:
matched = True
tp += 1 # bt is matched for the first time, count as TP
matched_bt.add(j)
if not matched:
fn += 1 # bt has no match, count as FN
# FP is the bp that not matched to any bt
fp = len(boxes_pred) - len(matched_bt)
m = tp / (tp + fn + fp)
map_total += m
return map_total / len(thresholds)
def get_annotations(generator):
""" Return list of annotations from generator """
annotations = []
for i in range(generator.size()):
# load the annotations
annotation = generator.load_annotations(i)[:, :4]
annotations.append(annotation)
return annotations
def get_scores(model, image, scale):
""" Return calculated bounding boxes and scores for an image """
# run network
boxes, scores, labels = model.predict_on_batch(
np.expand_dims(image, axis=0))
# correct boxes for image scale
boxes /= scale
image_scores = scores[0]
image_boxes = boxes[0]
return (image_boxes, image_scores)
def get_view_from_dicom(dcmfile):
""" Return ViewPosition dicom field from .dcm file """
ds = pydicom.read_file(dcmfile)
return ds.ViewPosition
def get_views_from_generator(generator, dcmdir):
views = []
for i in range(generator.size()):
dcmfile = os.path.basename(generator.image_path(i))[:-4]+".dcm"
dcmfpath = os.path.join(dcmdir, dcmfile)
views.append(get_view_from_dicom(dcmfpath))
return views
def get_detection_from_file(fpath, model, sz):
image = read_image_bgr(fpath)
image = preprocess_image(image)
image, scale = resize_image(image, min_side=sz)
return get_scores(model, image, scale)
def get_detections_from_generator(generator, model):
detections = []
for i in range(generator.size()):
path = generator.image_path(i)
raw_image = generator.load_image(i)
image = generator.preprocess_image(raw_image.copy())
image, scale = generator.resize_image(image)
detections.append(get_scores(model, image, scale))
return detections
def nms(boxes, scores, overlapThresh):
"""
adapted from non-maximum suppression by Adrian Rosebrock
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
"""
# if there are no boxes, return an empty list
if len(boxes) == 0:
return np.array([]).reshape(0, 4), np.array([])
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes
area = (x2 - x1 + 1) * (y2 - y1 + 1)
# sort the bounding boxes by scores in ascending order
idxs = np.argsort(scores)
# keep looping while indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return boxes[pick], scores[pick]
def wt_av(x, xw, y, yw):
""" Calculate a weighted average """
return (x*xw+y*yw)/(xw+yw)
def averages(boxes, scores, overlapThresh, solo_min=0):
""" Like non-max-suppression, but take weighted averages of overlapping bounding boxes """
# if there are no boxes, return an empty list
if len(boxes) == 0:
return np.array([]).reshape(0, 4), np.array([])
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes
area = (x2 - x1 + 1) * (y2 - y1 + 1)
# sort the bounding boxes by scores in ascending order
idxs = np.argsort(scores)
# keep looping while indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
overlap_idx = np.where(overlap > overlapThresh)[0].tolist()[::-1]
if len(overlap_idx) == 0:
if scores[i] >= solo_min:
pick.append(i)
else:
pick.append(i)
for j in overlap_idx:
boxes[i, :] = wt_av(boxes[i, :], scores[i],
boxes[idxs[j], :], scores[idxs[j]])
scores[i] = scores[i]+scores[idxs[j]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
if len(pick) > 0:
return boxes[pick], scores[pick]
else:
return np.array([]).reshape(0, 4), np.array([])
def intersects(boxes, scores, overlapThresh, solo_min=0, shrink=0):
""" Like weighted averages, but take intersections of overlapping bounding boxes """
# if there are no boxes, return an empty list
if len(boxes) == 0:
return np.array([]).reshape(0, 4), np.array([])
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes
area = (x2 - x1 + 1) * (y2 - y1 + 1)
# sort the bounding boxes by scores in ascending order
idxs = np.argsort(scores)
# keep looping while indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
overlap_idx = np.where(overlap > overlapThresh)[0].tolist()[::-1]
if len(overlap_idx) == 0:
if scores[i] >= solo_min:
pick.append(i)
shrink_factor = shrink/2
(bx1, by1, bx2, by2) = boxes[i, :]
diffx = bx2-bx1
diffy = by2-by1
boxes[i, 0] += shrink_factor*diffx
boxes[i, 1] -= shrink_factor*diffx
boxes[i, 2] += shrink_factor*diffy
boxes[i, 3] -= shrink_factor*diffy
else:
pick.append(i)
for j in overlap_idx:
boxes[i, :] = (xx1[j], yy1[j], xx2[j], yy2[j])
scores[i] = scores[i]+scores[idxs[j]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
if len(pick) > 0:
return boxes[pick], scores[pick]
else:
return np.array([]).reshape(0, 4), np.array([])
def shrink(bb, shrink_factor):
""" Shrinks bounding boxes by a factor in each dimension """
if len(bb) > 0:
x1 = bb[:, 0]
y1 = bb[:, 1]
x2 = bb[:, 2]
y2 = bb[:, 3]
diffx = x2-x1
diffy = y2-y1
shrink_factor /= 2
x1 += shrink_factor*diffx
x2 -= shrink_factor*diffx
y1 += shrink_factor*diffy
y2 -= shrink_factor*diffy