-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmpx_inference.jl
68 lines (54 loc) · 2.59 KB
/
mpx_inference.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
## Idea is to have both fitness and SBM effects in sexual contact
using Distributions, StatsBase, StatsPlots
using LinearAlgebra, RecursiveArrayTools
using OrdinaryDiffEq, ApproxBayes
using JLD2, MCMCChains, Roots
import MonkeypoxUK
## Grab UK data
include("mpxv_datawrangling_inff.jl");
include("setup_model.jl");
## Comment out to use latest data rather than reterospective data
colname = "seqn_fit7"
inferred_prop_na_msm = past_mpxv_data_inferred[:,colname] |> x -> x[.~ismissing.(x)]
mpxv_wkly = past_mpxv_data_inferred[1:size(inferred_prop_na_msm,1),["gbmsm","nongbmsm"]] .+ past_mpxv_data_inferred[1:size(inferred_prop_na_msm,1),"na_gbmsm"] .* hcat(inferred_prop_na_msm,1.0 .- inferred_prop_na_msm) |> Matrix
wks = Date.(past_mpxv_data_inferred.week[1:size(mpxv_wkly,1)], DateFormat("dd/mm/yyyy"))
## Define priors for the parameters
prior_vect_cng_pnt = [Gamma(1, 1), # α_choose 1
Beta(5, 5), #p_detect 2
truncated(Gamma(3, 6 / 3), 0, 21), #mean_inf_period - 1 3
Beta(2, 8), #p_trans 4
LogNormal(log(0.25), 0.25), #R0_other 5
Gamma(3, 1000 / 3),# M 6
LogNormal(log(5), 1),#init_scale 7
Uniform(135, 199),# chp_t 8
Beta(1.5, 1.5),#trans_red 9
Beta(1.5, 1.5),#trans_red_other 10
Beta(1.5,1.5),#trans_red WHO 11
Beta(1.5,1.5)]#trans_red_other WHO 12
## Use SBC for defining the ABC error target and generate prior predictive plots
ϵ_target, plt_prc, hist_err = MonkeypoxUK.simulation_based_calibration(prior_vect_cng_pnt, wks, mpxv_wkly, constants; target_perc=0.25)
setup_cng_pnt = ABCSMC(MonkeypoxUK.mpx_sim_function_chp, #simulation function
12, # number of parameters
ϵ_target, #target ϵ derived from simulation based calibration
Prior(prior_vect_cng_pnt); #Prior for each of the parameters
ϵ1=1000,
convergence=0.05,
nparticles=2000,
α=0.3,
kernel=gaussiankernel,
constants=constants,
maxiterations=10^7)
##Run ABC
smc_cng_pnt = runabc(setup_cng_pnt, mpxv_wkly, verbose=true, progress=true)
@save("posteriors/smc_posterior_draws_"*string(wks[end])*".jld2", smc_cng_pnt)
param_draws = [particle.params for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_param_draws_"*string(wks[end])*".jld2", param_draws)
##posterior predictive checking - simple plot to see coherence of model with data
post_preds = [part.other for part in smc_cng_pnt.particles]
plt = plot(; ylabel="Weekly cases",
title="Posterior predictive checking")
for pred in post_preds
plot!(plt, wks, pred, lab="", color=[1 2], alpha=0.1)
end
scatter!(plt, wks, mpxv_wkly, lab=["Data: (MSM)" "Data: (non-MSM)"],ylims = (0,800))
display(plt)