-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
48 lines (39 loc) · 1.49 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from torch import nn
from torch.nn import functional as F
from decoder import VAE_AttentionBlock, VAE_ResidualBlock
class VAE_Encoder(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3,128,kernel_size=3,padding=1),
VAE_ResidualBlock(128,128),
VAE_ResidualBlock(128,128),
nn.Conv2d(128,128,kernel_size=3,stride=2,padding=0),
VAE_ResidualBlock(128,256),
VAE_ResidualBlock(256,256),
nn.Conv2d(256,256,kernel_size=3,stride=2,padding=0),
VAE_ResidualBlock(256,512),
VAE_ResidualBlock(512,512),
nn.Conv2d(512,512,kernel_size=3,stride=2,padding=0),
VAE_ResidualBlock(512,512),
VAE_ResidualBlock(512,512),
VAE_ResidualBlock(512,512),
VAE_AttentionBlock(512),
VAE_ResidualBlock(512,512),
nn.GroupNorm(32,512),
nn.SiLU(),
nn.Conv2d(512,8,kernel_size=3,padding=1),
nn.Conv2d(8,8,kernel_size=1,padding=0),
)
def forward(self,x,noise):
for module in self:
if getattr(module,'stride',None)==(2,2):
x = F.pad(x,(0,1,0,1))
x = module(x)
mean, log_variance = torch.chunk(x,2,dim=1)
log_variance = torch.clamp(log_variance,-30,20)
variance=log_variance.exp()
stdev = variance.sqrt()
x = mean + stdev*noise
x *=0.18215
return x