-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisu_adv.py
117 lines (90 loc) · 2.96 KB
/
visu_adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 13 11:01:48 2017
@author: mducoffe
# visu adv
"""
import pickle as pkl
from contextlib import closing
#%%
def load_adv(repo, filename):
i = 0
assert os.path.isdir(repo), ('unknown repository %s', repo)
while os.path.isfile(os.path.join(repo, filename+'_'+str(i)+'.pkl')):
i+=1
filenames = [os.path.join(repo, filename+'_'+str(j)+'.pkl') for j in range(1,i)]
img_real=[]; img_adv=[]
for filename in filenames:
print(filename)
with closing(open(os.path.join(repo, filename), 'rb')) as f:
img_0, img_1 =pkl.load(f)
img_real.append(img_0)
img_adv.append(img_1)
return img_real, img_adv
#%%
repository="."
dataset='MNIST'
network='LeNet5'
active='aaq'
filename_template = 'adv_{}_{}_{}'.format(dataset, network, active)
img_real, img_adv =load_adv(repo, filename_template)
#%%
left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0. # the bottom of the subplots of the figure
top = 0.5 # the top of the subplots of the figure
wspace = 0.01 # the amount of width reserved for blank space between subplots
hspace = 0.
toto = img_real[0]
tata = img_adv[0]
img_real = [toto]*5
img_adv = [tata+10]*5
perturbations = [ real - adv for (real, adv) in zip(img_real, img_adv)]
import pylab as pl
#pl.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)
def hide_axis():
"""hides axis but let you use xlabel and ylalbels"""
pl.gca().spines['bottom'].set_color('white')
pl.gca().spines['top'].set_color('white')
pl.gca().spines['right'].set_color('white')
pl.gca().spines['left'].set_color('white')
pl.xticks(())
pl.yticks(())
nb_data=10
nb_query=10
nb_rows=3
nb_cols=N
N=5
pl.figure(1, (nb_rows, nb_cols))
for i in range(N):
pl.subplot(nb_rows,nb_cols,i+1)
pl.imshow(img_real[i][0], cmap='Blues',interpolation='nearest')
if i==0:
pl.ylabel('Top Score \n Query',fontsize=9)
hide_axis()
for i in range(N):
pl.subplot(nb_rows,nb_cols,i+1+N)
pl.imshow(img_adv[i][0], cmap='Blues',interpolation='nearest')
if i==0:
pl.ylabel('Adv \n Attack',fontsize=9)
hide_axis()
for i in range(N):
pl.subplot(nb_rows,nb_cols,i+1+2*N)
pl.imshow(perturbations[i][0], cmap='Blues',interpolation='nearest')
if i==0:
pl.ylabel('Adv \n Noise',fontsize=9)
pl.xlabel(str(nb_data+(i+1)*nb_query), fontsize=9)
hide_axis()
pl.tight_layout(pad=0,h_pad=-20,w_pad=0)
pl.close(5)
pl.figure(5,(nbt,nbm))
pl.clf()
for m in range(nbm):
for i in range(nbt):
pl.subplot(nbm,nbt,i+1+m*nbt)
pl.imshow(-Bi[m][i,:,:],cmap='gray')
if i==0:
pl.ylabel(methods[m],fontsize=18)
hide_axis()
pl.tight_layout(pad=0,h_pad=-.5,w_pad=-1.5)
pl.savefig('imgs/interp_comp_{}.pdf'.format(expe),dpi=300,bbox_inches='tight')