-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathci.py
264 lines (214 loc) · 10.2 KB
/
ci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from __future__ import print_function
import argparse
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision.models as models
from torch.utils.data.sampler import Sampler,SubsetRandomSampler
from deep_fool import deepfool
from vgg import content_encoder
import random
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0,1"
labelled_mask = list(range(0,500))
unlabelled_mask = list(range(2000, 50000))
unlabelled_mask_rand = []
query = 500
lm = len(labelled_mask)
um = len(unlabelled_mask)
print('len of labelled_mask: ',lm)
print('len of unlabelled_mask: ',um)
test_accs = []
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
import pdb;pdb.set_trace()
output,last_features = model(data)
output2 = output.reshape(output.shape[0],output.shape[1])
# output_softmax = F.softmax(output)
loss = F.cross_entropy(output2, target)
loss.backward()
optimizer.step()
# if batch_idx % args.log_interval == 0:
# print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
# epoch, batch_idx * len(data), len(train_loader.dataset),
# 100. * batch_idx / len(train_loader), loss.item()))
def coreset(args, model, device, labelled_data, unlabelled_data, optimizer):
global labelled_mask
global unlabelled_mask
dist_mat_sum = np.zeros((48500,48500))
for itern in range(64):
print(itern)
# dist = torch.tensor([])
# dist = dist.to(device)
dist = []
for batch_idx, (data, target) in enumerate(labelled_data):
data, target = data.to(device), target.to(device)
# optimizer.zero_grad()
output,last_features = model(data)
#extracting last layer features
encoding = last_features[:,511,:,:]
x,y,z = np.shape(encoding)
#64 encodings of 32 (batch size) images
img_encoding = encoding.reshape(x,y*z)
current_img_encoding = img_encoding[:,itern]
new_data = (current_img_encoding.data).cpu().numpy()
# dist = torch.cat([dist,current_img_encoding])
# import pdb; pdb.set_trace()
dist = np.append(dist,new_data)
# import pdb; pdb.set_trace()
x = np.shape(dist)
num_labelled = x[0]
print("labelled done")
for batch_idx, (data, target) in enumerate(unlabelled_data):
data, target = data.to(device), target.to(device)
# optimizer.zero_grad()
output,last_features = model(data)
#extracting last layer features
encoding = last_features[:,511,:,:]
x,y,z = np.shape(encoding)
#64 encodings of 32 (batch size) images
img_encoding = encoding.reshape(x,y*z)
current_img_encoding = img_encoding[:,itern]
new_data = (current_img_encoding.data).cpu().numpy()
# dist = torch.cat([dist,current_img_encoding])
# import pdb; pdb.set_trace()
dist = np.append(dist,new_data)
# import pdb; pdb.set_trace()
print("unlabelled done")
# import pdb; pdb.set_trace()
x = np.shape(dist)
dist_a = np.asarray(dist)
dist_vec = np.reshape(dist_a,(x[0],1))
dist_mat = np.matmul(dist_vec,dist_vec.transpose())
x,y = np.shape(dist_mat)
sq = np.array(dist_mat.diagonal()).reshape(x,1)
dist_mat *= -2
dist_mat+=sq
dist_mat+=sq.transpose()
print("debug 6")
dist_mat_sum = np.add(dist_mat_sum,dist_mat)
print("done this iter")
# import pdb; pdb.set_trace()
xx,yy = np.shape(dist_mat_sum)
useful_dist = dist_mat_sum[0:num_labelled,num_labelled:]
b = np.amin(useful_dist, axis=0)
# import pdb; pdb.set_trace()
min_norms = b.argsort()[:query]
# print(min_norms)
add_labels = [unlabelled_mask[i] for i in min_norms]
labelled_mask = labelled_mask + add_labels
unlabelled_mask = [x for x in unlabelled_mask if x not in add_labels]
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output,last_features = model(data)
output2 = output.reshape(output.shape[0],output.shape[1])
# output_softmax = F.softmax(output)
test_loss += F.cross_entropy(output2, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_acc = 100. * correct / len(test_loader.dataset)
test_accs.append(test_acc)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
# np.random.seed(2)
i = sys.argv[2]
jj = int(i,10)
print(jj*10)
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=2, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--iterNum', type=int, default=1, metavar='S',
help='iter num')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
# torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
trainset = datasets.CIFAR10('../data', train=True, download=True,
transform=transforms.Compose([
transforms.Resize((64,64), interpolation=2),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
testset = datasets.CIFAR10('../data', train=False, download=True,
transform=transforms.Compose([
transforms.Resize((64,64), interpolation=2),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
active_learn_iter = 0
print("Starting Active learning")
while active_learn_iter<30:
print('Active learning Iter: ', active_learn_iter)
labelled_data = torch.utils.data.DataLoader(trainset, batch_size=32,
sampler = SubsetRandomSampler(labelled_mask), shuffle=False, num_workers=2)
global unlabelled_mask_rand
# unlabelled_mask_rand = random.sample(unlabelled_mask, 2*query)
unlabelled_mask_rand = np.random.choice(unlabelled_mask, 2*query)
print('Random Numer 1 for test ', unlabelled_mask_rand[0])
unlabelled_data = torch.utils.data.DataLoader(trainset, batch_size=1,
sampler = SubsetRandomSampler(unlabelled_mask_rand), shuffle=False, num_workers=2)
complete_unlabelled_data = torch.utils.data.DataLoader(trainset, batch_size=32,
sampler = SubsetRandomSampler(unlabelled_mask), shuffle=False, num_workers=2)
test_data = torch.utils.data.DataLoader(testset, batch_size=10,
sampler = None, shuffle=False, num_workers=2)
model = content_encoder(10).to(device)
# model = models.resnet50(pretrained=True)
# num_ftrs = model.fc.in_features
# model.fc = nn.Linear(num_ftrs, 10)
model.cuda()
# if active_learn_iter != 0:
# model.load_state_dict(torch.load("cifar_resnet.pt"))
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
print('epochs: ',epoch)
train(args, model, device, labelled_data, optimizer, epoch)
test(args, model, device, test_data)
# active_learn(unlabelled_data,model)
coreset(args, model, device, labelled_data, complete_unlabelled_data, optimizer)
# rand_samp()
print("active_learn over")
lm = len(labelled_mask)
um = len(unlabelled_mask)
print('len of labelled_mask: ',lm)
print('len of unlabelled_mask: ',um)
# if (args.save_model):
# torch.save(model.state_dict(),"cifar_resnet.pt")
active_learn_iter = active_learn_iter + 1
with open('results_coreset_cifar_3april_%i*.txt'%jj, 'w') as f:
for item in test_accs:
f.write("%s\n"%item)
if __name__ == '__main__':
main()