-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrain_unet.py
134 lines (118 loc) · 5.36 KB
/
train_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import numpy as np
import os
import random
import tensorboardX
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
import config
from dataset.uv_dataset import UVDataset
from model.pipeline import PipeLine
parser = argparse.ArgumentParser()
parser.add_argument('--texturew', type=int, default=config.TEXTURE_W)
parser.add_argument('--textureh', type=int, default=config.TEXTURE_H)
parser.add_argument('--texture_dim', type=int, default=config.TEXTURE_DIM)
parser.add_argument('--use_pyramid', type=bool, default=config.USE_PYRAMID)
parser.add_argument('--view_direction', type=bool, default=config.VIEW_DIRECTION)
parser.add_argument('--data', type=str, default=config.DATA_DIR, help='directory to data')
parser.add_argument('--checkpoint', type=str, default=config.CHECKPOINT_DIR, help='directory to save checkpoint')
parser.add_argument('--logdir', type=str, default=config.LOG_DIR, help='directory to save checkpoint')
parser.add_argument('--train', default=config.TRAIN_SET)
parser.add_argument('--epoch', type=int, default=config.EPOCH)
parser.add_argument('--cropw', type=int, default=config.CROP_W)
parser.add_argument('--croph', type=int, default=config.CROP_H)
parser.add_argument('--batch', type=int, default=config.BATCH_SIZE)
parser.add_argument('--lr', type=float, default=config.LEARNING_RATE)
parser.add_argument('--betas', type=str, default=config.BETAS)
parser.add_argument('--l2', type=str, default=config.L2_WEIGHT_DECAY)
parser.add_argument('--eps', type=float, default=config.EPS)
parser.add_argument('--load', type=str, default=config.LOAD)
parser.add_argument('--epoch_per_checkpoint', type=int, default=config.EPOCH_PER_CHECKPOINT)
args = parser.parse_args()
def adjust_learning_rate(optimizer, epoch, original_lr):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if epoch <= 3:
lr = original_lr * 0.33 * epoch
elif epoch < 10:
lr = original_lr
elif epoch < 50:
lr = 0.3 * original_lr
else:
lr = 0.1 * original_lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
named_tuple = time.localtime()
time_string = time.strftime("%m_%d_%Y_%H_%M", named_tuple)
log_dir = os.path.join(args.logdir, time_string)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
writer = tensorboardX.SummaryWriter(logdir=log_dir)
checkpoint_dir = args.checkpoint + time_string
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
dataset = UVDataset(args.data, args.train, args.croph, args.cropw, args.view_direction)
dataloader = DataLoader(dataset, batch_size=args.batch, shuffle=True, num_workers=4)
model = PipeLine(args.texturew, args.textureh, args.texture_dim, args.use_pyramid, args.view_direction)
print('Loading Saved Model')
texture = torch.load(os.path.join(args.checkpoint, args.load))
model.texture.textures[0] = texture.textures[0]
model.texture.textures[1] = texture.textures[1]
model.texture.textures[2] = texture.textures[2]
step = 0
l2 = args.l2.split(',')
l2 = [float(x) for x in l2]
betas = args.betas.split(',')
betas = [float(x) for x in betas]
betas = tuple(betas)
optimizer = Adam([
{'params': model.unet.parameters()}],
lr=args.lr, betas=betas, eps=args.eps)
model = model.to('cuda')
model.train()
model.texture.textures[0].eval()
model.texture.textures[1].eval()
model.texture.textures[2].eval()
criterion = nn.L1Loss()
print('Training started')
for i in range(1, 1+args.epoch):
print('Epoch {}'.format(i))
adjust_learning_rate(optimizer, i, args.lr)
for samples in dataloader:
if args.view_direction:
images, uv_maps, extrinsics, masks = samples
# random scale
scale = 2 ** random.randint(-1,1)
images = F.interpolate(images, scale_factor=scale, mode='bilinear')
uv_maps = uv_maps.permute(0, 3, 1, 2)
uv_maps = F.interpolate(uv_maps, scale_factor=scale, mode='bilinear')
uv_maps = uv_maps.permute(0, 2, 3, 1)
step += images.shape[0]
optimizer.zero_grad()
preds = model(uv_maps.cuda(), extrinsics.cuda()).cpu()
else:
images, uv_maps, masks = samples
# random scale
scale = 2 ** random.randint(-1,1)
images = F.interpolate(images, scale_factor=scale, mode='bilinear')
uv_maps = uv_maps.permute(0, 3, 1, 2)
uv_maps = F.interpolate(uv_maps, scale_factor=scale, mode='bilinear')
uv_maps = uv_maps.permute(0, 2, 3, 1)
step += images.shape[0]
optimizer.zero_grad()
preds = model(uv_maps.cuda()).cpu()
loss = criterion(preds, images)
loss.backward()
optimizer.step()
writer.add_scalar('train/loss', loss.item(), step)
print('loss at step {}: {}'.format(step, loss.item()))
# save checkpoint
if i % args.epoch_per_checkpoint == 0:
print('Saving checkpoint')
torch.save(model, args.checkpoint+time_string+'/epoch_{}.pt'.format(i))
if __name__ == '__main__':
main()