-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathLiftStateful.v
313 lines (255 loc) · 9.97 KB
/
LiftStateful.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
From Coq Require Import Morphisms.
Set Warnings "-notation-overridden,-ambiguous-paths".
From mathcomp Require Import all_ssreflect.
Set Warnings "notation-overridden,ambiguous-paths".
From SSProve.Mon Require Import SPropBase.
From SSProve.Relational Require Import OrderEnrichedCategory OrderEnrichedRelativeMonadExamples.
From SSProve.Crypt Require Import OrderEnrichedRelativeAdjunctions OrderEnrichedRelativeAdjunctionsExamples ChoiceAsOrd.
Import SPropNotations.
Section AuxLemmas.
Context {A : Type} {P : A -> Prop}.
Lemma myBetaRed : forall x e, (exist P x e)∙1 = x.
Proof.
move=> x e. simpl. reflexivity.
Qed.
Context {B : Type}.
Context (f g : A -> B).
Lemma funRewrite : f = g -> forall a , f a = g a.
Proof.
move=> H. rewrite H. move=> a. reflexivity.
Qed.
End AuxLemmas.
Section MonotonicBind.
Notation η := ord_relmon_unit.
Notation dnib := ord_relmon_bind.
Let J :=
(ord_functor_comp F_choice_prod SubDistr.chDiscr).
Context {W : ord_relativeMonad J}.
Import OrderEnrichedRelativeMonadExamplesNotation.
Open Scope SPropMonadicStructures_scope.
Context {AA BB : prod_cat ord_choiceType ord_choiceType}.
Context (w w' : dfst (W AA)).
Context (Hw : w ≤ w').
Context (f : OrdCat⦅ J AA ; W BB⦆).
Lemma monotonic_bind :
((dnib W) f )∙1 w ≤ ((dnib W) f )∙1 w'.
Proof.
destruct (dnib W f) as [gg ggmon].
apply ggmon. assumption.
Qed.
Lemma noMoreLets :
forall f1 f2 : OrdCat⦅ J AA ; W BB ⦆,
f1 = f2 -> (let (a,_) := dnib W f1 in a) = (let (a,_) := dnib W f2 in a).
Proof.
move=> f1 f2. move=> Hf. rewrite Hf. reflexivity.
Qed.
End MonotonicBind.
Section ComputationalAuxiliary.
Notation η := ord_relmon_unit.
Notation dnib := ord_relmon_bind.
(*applied relmon laws for monad I → TypeCat*)
Context {I : ord_category}.
Context {J : ord_functor I TypeCat}.
Context {M : ord_relativeMonad J}.
Lemma applied_ord_relmon_law1 :
forall (A : I) x, dnib M (η M A) x = x.
Proof.
move=> A. move=> x. rewrite ord_relmon_law1. simpl. reflexivity.
Qed.
Lemma applied_ord_relmon_law2 :
forall (A B : I) (f : TypeCat ⦅ J A; M B ⦆) x, dnib M f ( η M A x ) = f x.
Proof.
move=> A B f x.
unshelve epose (aux := (ord_relmon_law2 M) _ _ _).
shelve. shelve. exact f.
unshelve eapply equal_f in aux. exact x. simpl in aux.
assumption.
Qed.
Lemma applied_ord_relmon_law3 :
forall (A B C : I) (f : TypeCat ⦅ J B; M C ⦆) (g : TypeCat ⦅ J A; M B ⦆) x,
dnib M (dnib M f ∙ g) x = dnib M f ( dnib M g x).
Proof.
move=> A B C f g x.
epose (aux := (ord_relmon_law3 M) A B C f g).
unshelve eapply equal_f in aux. exact x.
assumption.
Qed.
End ComputationalAuxiliary.
Section ComputationalStatefulLiftDef.
Notation η := ord_relmon_unit.
Notation dnib := ord_relmon_bind.
(*The semantic relational framework we are using assumes that there is a relational
computational monad which is a product of two unary computational monads M1 and M2.
Here we have Mi : choiceType → Type two choiceType relative unary computational
monads.
*)
Context {M1 M2 : ord_relativeMonad choice_incl}.
Let M := product_rmon M1 M2. (*relational computational monad*)
(*The transforming state adjunction*)
Context {S1 S2 : ord_choiceType}.
Let TingAdj := Chi_DomainStateAdj S1 S2.
(*The state transformed computational monad*)
Let StT_M := AdjTransform M _ _ TingAdj.
(*We wish to build the lift morphism M → StT_M*)
Definition StatefulCompLift0 :
forall A : prod_cat ord_choiceType ord_choiceType,
prod_cat TypeCat TypeCat ⦅ ord_functor_id (prod_cat TypeCat TypeCat) (M A);
StT_M A ⦆.
move=> [A1 A2]. simpl. rewrite /F_choice_prod_obj. constructor.
- move=> m s. eapply (dnib M1).
move=> a. apply (η M1). simpl. exact (a,s). exact m.
- move=> m s. eapply (dnib M2).
move=> a. apply (η M2). simpl. exact (a,s). exact m.
Defined.
Let J := prod_functor choice_incl choice_incl.
Let myChi := natIso_sym (ord_functor_unit_right J).
Program Definition StatefulCompLift :=
mkRelMonMorph _ myChi M StT_M StatefulCompLift0 _ _.
Next Obligation.
move=> [A1 A2]. f_equal.
- apply boolp.funext. move=> a. apply boolp.funext. move=> s.
rewrite /F_choice_prod_obj. simpl.
epose (bla :=
(ord_relmon_law2 M1) _ _ (fun a0 : choice.Choice.sort A1 => η M1 (choice.prod_choiceType A1 S1) (a0, s)) ). simpl in bla.
unshelve eapply equal_f in bla. exact a.
assumption.
- apply boolp.funext. move=> a. apply boolp.funext. move=> s.
rewrite /F_choice_prod_obj. simpl.
epose (bla :=
(ord_relmon_law2 M2) _ _ (fun a0 : choice.Choice.sort A2 => η M2 (choice.prod_choiceType A2 S2) (a0, s)) ). simpl in bla.
unshelve eapply equal_f in bla. exact a.
assumption.
Qed.
Next Obligation.
move=> [A1 A2] [B1 B2]. simpl.
move=> [k1 k2].
rewrite /OrderEnrichedRelativeAdjunctionsExamples.ToTheS_obligation_1.
simpl. f_equal.
- apply boolp.funext. move=> m. apply boolp.funext. move=> s.
(*nice proof technique here*)
pose (bindbindM1 := (ord_relmon_law3 M1)).
eapply equal_f in bindbindM1. simpl in bindbindM1.
erewrite <- bindbindM1. clear bindbindM1.
(*ends here. We do a similar rewriting in the righthandside*)
pose (bindbindM1 := (ord_relmon_law3 M1)).
eapply equal_f in bindbindM1. simpl in bindbindM1.
erewrite <- bindbindM1. clear bindbindM1.
(*ends here. The two erewritings are equivalent to the following:*)
(* rewrite -!applied_ord_relmon_law3. simpl. *)
f_equal.
apply boolp.funext. move=> a.
rewrite ! applied_ord_relmon_law2. reflexivity.
- apply boolp.funext. move=> m. apply boolp.funext. move=> s.
rewrite - !applied_ord_relmon_law3. simpl.
f_equal.
apply boolp.funext. move=> a.
rewrite ! applied_ord_relmon_law2. reflexivity.
Qed.
End ComputationalStatefulLiftDef.
Section SpecificationAuxiliary.
Notation η := ord_relmon_unit.
Notation dnib := ord_relmon_bind.
(*applied relmon laws for monad I → TypeCat*)
Context {I : ord_category}.
Context {J : ord_functor I OrdCat}.
Context {M : ord_relativeMonad J}.
Lemma spec_applied_ord_relmon_law1 :
forall (A : I) x, (dnib M (η M A))∙1 x = x.
Proof.
move=> A. move=> x. rewrite ord_relmon_law1. simpl. reflexivity.
Qed.
Lemma spec_applied_ord_relmon_law2 :
forall (A B : I) (f : OrdCat ⦅ J A; M B ⦆) x, (dnib M f)∙1 ( (η M A)∙1 x ) = f∙1 x.
Proof.
move=> A B f x.
unshelve epose (aux := (ord_relmon_law2 M) _ _ _).
shelve. shelve. exact f.
apply (f_equal sval) in aux. simpl in aux.
unshelve eapply equal_f in aux. exact x. simpl in aux.
assumption.
Qed.
Lemma spec_applied_ord_relmon_law3 :
forall (A B C : I) (f : OrdCat ⦅ J B; M C ⦆) (g : OrdCat ⦅ J A; M B ⦆) x,
(dnib M (dnib M f ∙ g))∙1 x = (dnib M f)∙1 ( (dnib M g)∙1 x).
Proof.
move=> A B C f g x.
simpl.
epose (aux := (ord_relmon_law3 M) A B C f g).
apply (f_equal sval) in aux. simpl in aux.
unshelve eapply equal_f in aux. exact x.
assumption.
Qed.
End SpecificationAuxiliary.
Section SpecficationStatefulLiftDef.
Notation η := ord_relmon_unit.
Notation dnib := ord_relmon_bind.
(*
A relational specification monad W is a monad relative to
the product;discrete functor J : choiceType² → Preorder
*)
Context {S1 S2 : ord_choiceType}.
Let J :=
(ord_functor_comp F_choice_prod SubDistr.chDiscr).
Context {W : ord_relativeMonad J}.
(*the state , transforming, adjunction*)
Let TingAdj := Chi_CodomainStateAdj S1 S2.
(*The state transformed spec monad*)
Let StT_W := AdjTransform W _ _ TingAdj.
(* We wish to build a rmm morphism lift : W -> StT_W *)
Program Definition StatefulSpecLift0 (A : prod_cat ord_choiceType ord_choiceType) :
OrdCat ⦅ ord_functor_id OrdCat (W A); StT_W A ⦆ := exist _ _ _.
Next Obligation.
move=> [A1 A2]. move=> w. unshelve econstructor.
rewrite /F_choice_prod_obj. cbn.
move=> [s1 s2].
unshelve eapply (dnib W). exact ⟨A1,A2⟩.
unshelve econstructor.
cbn. move=> [a1 a2]. eapply (η W). exact ((a1,s1),(a2,s2)).
move=> [a1 a2] [a1' a2']. cbn.
move=> Ha. inversion Ha. reflexivity.
exact w.
move=> [s1 s2] [s1' s2'] Hs. inversion Hs ; reflexivity.
Defined.
Next Obligation.
move=> [A1 A2]. move=> w w'. move=> Hw. move=> [s1 s2].
cbn.
eapply monotonic_bind. assumption.
Qed.
Let myChi := natIso_sym (ord_functor_unit_right J).
Program Definition StatefulSpecLift :=
mkRelMonMorph _ myChi W StT_W StatefulSpecLift0 _ _.
Next Obligation.
move=> [A1 A2]. apply sig_eq. cbn.
apply boolp.funext. move=> [a1 a2]. cbn.
rewrite /OrderEnrichedRelativeAdjunctions.relKleisli_obligation_1.
rewrite /F_choice_prod_obj.
rewrite /StatefulSpecLift0_obligation_1.
cbn.
apply sig_eq. cbn. apply boolp.funext.
move=> [s1 s2].
pose (bindretW := @spec_applied_ord_relmon_law2 _ _ W).
cbv in bindretW. rewrite bindretW.
destruct (η W ⟨prod_choiceType A1 S1, prod_choiceType A2 S2⟩).
cbn. reflexivity.
Qed.
Next Obligation.
move=> [A1 A2] [B1 B2] [ff ffmon].
apply sig_eq. cbn. apply boolp.funext. move=> w.
rewrite /StatefulSpecLift0_obligation_1. cbn.
apply sig_eq. cbn. apply boolp.funext.
move=> [s1 s2].
cbn.
pose (bindbindW := (@spec_applied_ord_relmon_law3 _ _ W)).
cbv in bindbindW. rewrite -bindbindW.
unfold "∙1". cbn. rewrite -bindbindW.
(* destruct ( η W ⟨ prod_choiceType A1 S1, prod_choiceType A2 S2 ⟩ ) *)
(* as [eta_as eta_as1_mon]. *)
(* destruct ( η W ⟨ prod_choiceType B1 S1, prod_choiceType B2 S2 ⟩ ) *)
(* as [eta_bs eta_bs_mon]. *)
cbn.
move: w. apply funRewrite. apply noMoreLets. apply sig_eq.
cbn. apply boolp.funext. move=> [a1 a2].
pose (bindretW := (@spec_applied_ord_relmon_law2 _ _ W)).
cbv in bindretW. rewrite bindretW. reflexivity.
Qed.
End SpecficationStatefulLiftDef.