-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun_longExp.py
366 lines (316 loc) · 17.4 KB
/
run_longExp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import argparse
import copy
import datetime
import os
import time
from data_provider import data_loader
ds = time.strftime("%Y%m%d", time.localtime())
dh = time.strftime("%Y%m%d%H", time.localtime())
cur_sec = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(cur_sec)
from pprint import pprint
import torch
import settings
from settings import data_settings
from exp.exp_main import Exp_Main
from exp.exp_lead import Exp_Lead
import random
import numpy as np
def str_to_bool(value):
if isinstance(value, bool):
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise ValueError(f'{value} is not a valid boolean value')
parser = argparse.ArgumentParser(description='Time Series Forecasting')
# basic config
parser.add_argument('--is_training', type=int, default=1, help='status')
parser.add_argument('--train_only', action='store_true', default=False, help='perform training on full input dataset without validation and testing')
parser.add_argument('--wo_test', action='store_true', default=False, help='only valid, not test')
parser.add_argument('--only_test', action='store_true', default=False)
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Informer, Transformer]')
parser.add_argument('--override_hyper', action='store_true', default=True, help='Override hyperparams by setting.py')
parser.add_argument('--compile', action='store_true', default=False, help='Compile the model by Pytorch 2.0')
parser.add_argument('--reduce_bs', type=str_to_bool, default=False, help='Override batch_size in hyperparams by setting.py')
parser.add_argument('--normalization', type=str, default=None)
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# data loader
parser.add_argument('--root_path', type=str, default='./dataset/', help='root path of the data file')
parser.add_argument('--dataset', type=str, default='ETTh1', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--wrap_data_class', type=list, default=[])
# forecasting task
parser.add_argument('--seq_len', type=int, default=336, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=720, help='prediction sequence length')
# LIFT
parser.add_argument('--leader_num', type=int, default=4, help='# of leaders')
parser.add_argument('--state_num', type=int, default=8, help='# of variate states')
parser.add_argument('--prefetch_path', type=str, default='./prefetch/', help='location of prefetch files that records lead-lag relationships')
parser.add_argument('--tag', type=str, default='_max')
parser.add_argument('--prefetch_batch_size', type=int, default=16, help='prefetch_batch_size')
parser.add_argument('--variable_batch_size', type=int, default=32, help='variable_batch_size')
parser.add_argument('--max_leader_num', type=int, default=16, help='max # of leaders')
parser.add_argument('--masked_corr', action='store_true', default=False)
parser.add_argument('--efficient', type=str_to_bool, default=True)
parser.add_argument('--pin_gpu', type=str_to_bool, default=True)
parser.add_argument('--pretrain', action='store_true', default=False)
parser.add_argument('--freeze', action='store_true', default=False)
parser.add_argument('--lift', action='store_true', default=False)
parser.add_argument('--temperature', type=float, default=1.0, help='softmax temperature')
# DLinear
parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
# PatchTST
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.0, help='head dropout')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--revin', type=int, default=1, help='RevIN; True 1 False 0')
parser.add_argument('--affine', type=int, default=0, help='RevIN-affine; True 1 False 0')
parser.add_argument('--subtract_last', type=int, default=0, help='0: subtract mean; 1: subtract last')
parser.add_argument('--decomposition', type=int, default=0, help='decomposition; True 1 False 0')
parser.add_argument('--kernel_size', type=int, default=25, help='decomposition-kernel')
# Formers
parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=3, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in encoder')
parser.add_argument('--output_enc', action='store_true', help='whether to output embedding from encoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# Crossformer
parser.add_argument('--seg_len', type=int, default=24, help='segment length (L_seg)')
parser.add_argument('--win_size', type=int, default=2, help='window size for segment merge')
parser.add_argument('--num_routers', type=int, default=10, help='num of routers in Cross-Dimension Stage of TSA (c)')
# MTGNN
parser.add_argument('--subgraph_size',type=int,default=20,help='k')
parser.add_argument('--in_dim',type=int,default=1)
# GPT4TS
parser.add_argument('--gpt_layers', type=int, default=6)
parser.add_argument('--tmax', type=int, default=10)
parser.add_argument('--patch_size', type=int, default=16)
# optimization
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--itr', type=int, default=5, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
parser.add_argument('--begin_valid_epoch', type=int, default=0)
parser.add_argument('--patience', type=int, default=5, help='early stopping patience')
parser.add_argument('--optim', type=str, default='Adam')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
parser.add_argument('--warmup_epochs', type=int, default=5)
# GPU
parser.add_argument('--use_gpu', type=str_to_bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
parser.add_argument("--local-rank", default=os.getenv('LOCAL_RANK', -1), type=int)
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
import platform
if platform.system() != 'Windows':
args.num_workers = 0
else:
torch.cuda.set_per_process_memory_fraction(48/61, 0)
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
args.enc_in, args.c_out = data_settings[args.dataset][args.features]
args.data_path = data_settings[args.dataset]['data']
args.dec_in = args.enc_in
if args.tag and args.tag[0] != '_':
args.tag = '_' + args.tag
args.data = args.data_path[:5] if args.data_path.startswith('ETT') else 'custom'
if args.model.startswith('GPT4TS'):
args.data += '_CI'
FLAG_LIFT = args.model == 'LightMTS' or args.lift
if FLAG_LIFT:
Exp = Exp_Lead
args.wrap_data_class.append(data_loader.Dataset_Lead_Pretrain if args.freeze else data_loader.Dataset_Lead)
if args.dataset.startswith('ETT'):
args.efficient = False
else:
Exp = Exp_Main
args.model_id = f'{args.dataset}_{args.seq_len}_{args.pred_len}_{args.model}'
if args.normalization is not None:
args.model_id += '_' + args.normalization
if args.override_hyper and args.model in settings.hyperparams:
if 'prefetch_batch_size' in data_settings[args.dataset]:
args.__setattr__('prefetch_batch_size', data_settings[args.dataset]['prefetch_batch_size'])
for k, v in settings.get_hyperparams(args.dataset, args.model, args).items():
args.__setattr__(k, v)
if args.local_rank != -1:
torch.cuda.set_device(args.local_rank)
args.gpu = args.local_rank
torch.distributed.init_process_group(backend="nccl", init_method='env://')
args.num_gpus = torch.cuda.device_count()
args.batch_size = args.batch_size // args.num_gpus
if FLAG_LIFT and args.pretrain and args.freeze:
args.lradj = 'type3'
if args.model in ['MTGNN']:
if 'feat_dim' in data_settings[args.dataset]:
args.in_dim = data_settings[args.dataset]['feat_dim']
args.enc_in = int(args.enc_in / args.in_dim)
if args.features == 'M':
args.c_out = int(args.c_out / args.in_dim)
K_tag = f'_K{args.leader_num}' if args.leader_num > 8 and args.enc_in > 8 else ''
prefetch_path = os.path.join(args.prefetch_path, f'{args.dataset}_L{args.seq_len}{K_tag}{args.tag}')
if not os.path.exists(prefetch_path + '_train.npz'):
K_tag = f'_K16' if args.leader_num > 8 and args.enc_in > 8 else ''
prefetch_path = os.path.join(args.prefetch_path, f'{args.dataset}_L{args.seq_len}{K_tag}{args.tag}')
args.prefetch_path = prefetch_path
if args.lift and 'Linear' in args.model or args.model == 'LightMTS':
args.patience = max(args.patience, 5)
args.find_unused_parameters = args.model in ['MTGNN']
print('Args in experiment:')
print(args)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
# torch.backends.cudnn.benchmark=False
# torch.backends.cudnn.deterministic = True
if __name__ == '__main__':
train_data, train_loader, vali_data, vali_loader = None, None, None, None
test_data, test_loader = None, None
if args.is_training:
all_results = {'mse': [], 'mae': []}
for ii in range(args.itr):
if args.model == 'PatchTST' and args.dataset in ['ECL', 'Traffic', 'Illness', 'Weather']:
fix_seed = 2021 + ii
else:
fix_seed = 2023 + ii
setup_seed(fix_seed)
print('Seed:', fix_seed)
setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_lr{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.model_id,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.learning_rate,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
if args.pretrain:
pretrain_setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_lr{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.model_id,
args.border_type if args.border_type else args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
settings.pretrain_lr(args.model, args.dataset, args.pred_len, args.learning_rate),
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
args.pred_path = os.path.join('./results/', pretrain_setting, 'real_prediction.npy')
args.load_path = os.path.join('./checkpoints/', pretrain_setting, 'checkpoint.pth')
if FLAG_LIFT and args.freeze:
if not os.path.exists(args.pred_path) and args.local_rank <= 0:
_args = copy.deepcopy(args)
_args.freeze = False
_args.wrap_data_class = []
exp = Exp_Main(_args)
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(pretrain_setting))
exp.predict(pretrain_setting, True)
torch.cuda.empty_cache()
if args.lift:
setting += '_lift'
exp = Exp(args) # set experiments
path = os.path.join("checkpoints", setting, 'checkpoint.pth')
print('Checkpoints in', path)
if not args.only_test or not os.path.exists(path):
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, train_data, train_loader, vali_data, vali_loader = exp.train(setting, train_data, train_loader, vali_data, vali_loader)
torch.cuda.empty_cache()
else:
print('Loading', path)
exp.load_checkpoint(path)
print('Learning rate of model_optim is', exp.model_optim.param_groups[0]['lr'])
if not args.wo_test and not args.train_only and args.local_rank <= 0:
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mse, mae, test_data, test_loader = exp.test(setting, test_data, test_loader)
all_results['mse'].append(mse)
all_results['mae'].append(mae)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.cuda.empty_cache()
if not args.wo_test and not args.train_only and args.local_rank <= 0:
for k in all_results.keys():
all_results[k] = np.array(all_results[k])
all_results[k] = [all_results[k].mean(), all_results[k].std()]
pprint(all_results)
else:
ii = 0
setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_lr{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.model_id,
args.border_type if args.border_type else args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.learning_rate,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
args.load_path = os.path.join(args.checkpoints, setting, 'checkpoint.pth')
# args.pretrain = True
if args.lift:
setting += '_lift'
exp = Exp(args) # set experiments
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
else:
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()