-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathHLCM_estimation.py
209 lines (180 loc) · 7.27 KB
/
HLCM_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
"""
HLCM_estimation.py
This script performs estimation using the Automatic Relevance Determination (ARD-DCM)
for various large areas within an urban simulation context. It handles data loading, variable
selection, estimation, and running Multinomial Logit (MNL) models. The script is designed for
flexible execution across multiple large areas.
"""
import os
import numpy as np
import pandas as pd
import time
import time
from lcm_utils import *
from dcm_ard_libs import minimize, neglog_DCM
from fit_large_MNL_LCM import run_large_MNL
from urbansim_templates import modelmanager as mm
mm.initialize('configs/hlcm_2050')
# from guppy import hpy; h=hpy()
# import pymrmr
# suppress sklearn warnings
def warn(*args, **kwargs):
pass
os.chdir("/home/da/semcog_urbansim")
# config
data_path = r'/home/da/share/urbansim/RDF2050/model_inputs/base_hdf'
var_pool_table_path = "/home/da/share/urbansim/RDF2050/model_estimation/configs_hlcm_2050_update3.xlsx"
choice_column = "building_id"
hh_filter_columns = ["building_id", "large_area_id", "mcd_model_quota", "year_built", "residential_units"]
b_filter_columns = ["large_area_id", "mcd_model_quota", "residential_units"]
# Estimation Config
HH_SAMPLE_SIZE = 10000
ESTIMATION_SAMPLE_SIZE = 50
def estimation(LARGE_AREA_ID, hh_region, b_region, vars_to_use):
"""
Perform estimation using the ARD-DCM model.
This function performs estimation using the ARD-DCM (Automatic Relevance Determination) for a given
large area, using the provided household and building data along with a list of variables to use.
Parameters:
LARGE_AREA_ID (int): ID of the large area for estimation.
hh_region (pd.DataFrame): Household data DataFrame.
b_region (pd.DataFrame): Building data DataFrame.
vars_to_use (np.ndarray): Array of variable names
Returns:
None
"""
# sampling hh
# from the new move-ins, last 5-10 years
# weighted by mcd_quota
hh = hh_region[hh_region.large_area_id == LARGE_AREA_ID]
hh = hh[hh.building_id > 1]
hh = hh[hh.residential_units > 0]
hh = hh[hh.year_built > 2005]
# exclude hh in pseudo buildings
hh = hh[hh.building_id < 90000000]
# add 1 to all hh's mcd_model_quota for weights
hh["mcd_model_quota"] += 1
# if total number of hh is less than HH_SAMPLE_SIZE
hh_sample = min(HH_SAMPLE_SIZE, hh.shape[0])
hh = hh.sample(hh_sample, weights="mcd_model_quota")
hh = hh.reset_index()
hh = hh.fillna(0)
# sample buildings from the chosen HH's buildings list
uhh_id = hh.building_id.unique()
sampled_b_id = []
for _ in range(ESTIMATION_SAMPLE_SIZE-1):
for j in hh.building_id:
sampled_b_id.append(np.random.choice(uhh_id[uhh_id!=j]))
b_sample = b_region.loc[sampled_b_id]
b_sample = pd.concat([b_region.loc[hh.building_id], b_sample])
b_sample = b_sample.reset_index()
b_sample = b_sample.fillna(0)
# remove unnecessary col in HH
hh = hh[[col for col in hh.columns if col not in hh_filter_columns+["household_id"] or col in ['year_built']]]
# remove unnecessary col in buildings
b_sample = b_sample[[col for col in b_sample.columns if col not in b_filter_columns]]
X_df = pd.concat(
[pd.concat([hh]*ESTIMATION_SAMPLE_SIZE).reset_index(drop=True), b_sample], axis=1)
# Y: 1 for the building picked
# Y = X_df.building_id.isin(picked_bid).astype(int).values
# Y: set first hh_sample item 1
Y = np.zeros((hh_sample*ESTIMATION_SAMPLE_SIZE,1), dtype=int)
Y[:hh_sample,0] = 1
# remove extra cols
X_df = X_df[[col for col in X_df.columns if col not in ['building_id']]]
# create interaction variables
newX_cols_name = vars_to_use
X_wiv = np.array([])
for varname in newX_cols_name:
if X_wiv.size > 0:
X_wiv = np.concatenate((X_wiv, get_interaction_vars(X_df, varname)), axis=1)
else:
X_wiv = get_interaction_vars(X_df, varname)
# df to ndarray
X = X_wiv
# col index with 0 variation
used_val = np.arange(X.shape[1])[np.std(X, axis=0, dtype=np.float64) > 0]
unused_val = np.array([x for x in range(X.shape[1]) if x not in used_val])
# only keep variables with variation
X = X[:, np.std(X, axis=0, dtype=np.float64) > 0]
# standardize X
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0, dtype=np.float64)
# shuffle X
shuffled_index = np.arange(Y.size)
np.random.shuffle(shuffled_index)
X = X[shuffled_index, :].astype(float)
Y = Y[shuffled_index].reshape(-1, 1)
Y_onehot = Y
# availablechoice is 1
available_choice = np.ones((X.shape[0], 1))
# theta: m x 1
theta = np.zeros((X.shape[1], 1))
# dtypes conversion
X = {0:X, 1:X}
theta = {0:theta, 1:theta}
Y = 1 - Y # 0 means picked, 1 means not picked
Y_onehot = np.concatenate((Y_onehot, 1-Y_onehot), axis=1)
available_choice = np.concatenate((available_choice, available_choice), axis=1)
# Optimize theta using ARD minimization
t0 = time.time()
theta_optim_full = minimize(theta, neglog_DCM, -10000, X, Y, Y_onehot, available_choice)
t1 = time.time()
print("minimizer finished in ", t1-t0)
# exporting theta
out_theta = pd.DataFrame(theta_optim_full[0], columns=['theta'])
out_theta.index = newX_cols_name[used_val]
out_theta = out_theta.loc[out_theta.theta.abs().sort_values(ascending=False).index]
out_theta.to_csv('configs/hlcm_2050/thetas/out_theta_%s_%s.txt' % (LARGE_AREA_ID, ESTIMATION_SAMPLE_SIZE))
# Print variables with zero variation
print("Warning: variables with 0 variation")
print(newX_cols_name[unused_val])
print('ARD-DCM done')
if __name__ == "__main__":
# Configuration for large area estimation
la_estimation_configs = {
3: {
'skip_estimation': True,
'number_of_var_to_use': 40
},
5: {
'skip_estimation': True,
'number_of_var_to_use': 40
},
93: {
'skip_estimation': True,
'number_of_var_to_use': 50
},
99: {
'skip_estimation': True,
'number_of_var_to_use': 40
},
115: {
'skip_estimation': True,
'number_of_var_to_use': 50
},
125: {
'skip_estimation': True,
'number_of_var_to_use': 40
},
147: {
'skip_estimation': True,
'number_of_var_to_use': 40
},
161: {
'skip_estimation': True,
'number_of_var_to_use': 50
},
}
# Get valid household and building variables
valid_hh_vars, valid_b_vars = get_hlcm_valid_vars(data_path)
# Load household data, building data, and variables to use
hh_region, b_region, vars_to_use = load_hlcm_dataset(valid_hh_vars, valid_b_vars, var_pool_table_path,
hh_filter_columns, b_filter_columns, use_cache=True)
# Loop through each large area and perform estimation and MNL model run
for la_id, la_config in la_estimation_configs.items():
if not la_config['skip_estimation']:
# Perform estimation for the current large area
estimation(la_id, hh_region, b_region, vars_to_use)
# Run large MNL model for the current large area
run_large_MNL(hh_region, b_region, la_id, la_config['number_of_var_to_use'])