-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
299 lines (241 loc) · 9.55 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#include <Arduino.h>
#define MC esp32
#if MC == esp32
#include <Servo.h>
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
MPU6050 mpu;
#define OUTPUT_READABLE_YAWPITCHROLL
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;
// MPU control/status vars
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
// orientation/motion vars
Quaternion q; // [w, x, y, z] quaternion container
VectorFloat gravity; // [x, y, z] gravity vector
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
Servo esp32_servo;
#define boardVolt 3.3 // if microcontroller = 5V then max Analog = 1023 else its const char outputFormat[]
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
mpuInterrupt = true;
}
void setup() {
// join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
}
mpu.initialize();
devStatus = mpu.dmpInitialize();
mpu.setXGyroOffset(0);
mpu.setYGyroOffset(0);
mpu.setZGyroOffset(0);
void loop() {
// if programming failed, don't try to do anything
if (!dmpReady) return;
// wait for MPU interrupt or extra packet(s) available
while (!mpuInterrupt && fifoCount < packetSize) {
// other program behavior stuff here
// .
// .
// .
// if you are really paranoid you can frequently test in between other
// stuff to see if mpuInterrupt is true, and if so, "break;" from the
// while() loop to immediately process the MPU data
// .
// .
// .
}
// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();
// get current FIFO count
fifoCount = mpu.getFIFOCount();
// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
Serial.println(F("FIFO overflow!"));
// otherwise, check for DMP data ready interrupt (this should happen frequently)
} else if (mpuIntStatus & 0x02) {
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);
// track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;
#ifdef OUTPUT_READABLE_QUATERNION
// display quaternion values in easy matrix form: w x y z
mpu.dmpGetQuaternion(&q, fifoBuffer);
Serial.print("quat\t");
Serial.print(q.w);
Serial.print("\t");
Serial.print(q.x);
Serial.print("\t");
Serial.print(q.y);
Serial.print("\t");
Serial.println(q.z);
#endif
#ifdef OUTPUT_READABLE_EULER
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetEuler(euler, &q);
Serial.print("euler\t");
Serial.print(euler[0] * 180/M_PI);
Serial.print("\t");
Serial.print(euler[1] * 180/M_PI);
Serial.print("\t");
Serial.println(euler[2] * 180/M_PI);
#endif
#ifdef OUTPUT_READABLE_YAWPITCHROLL
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
int posG[] = {0, 0, 1000};
int posR[] = {(- 90 + random(180), (-180 + random(360)), (3000))};
Serial.print("ypr\t");
Serial.print(ypr[0] * 180/M_PI);
Serial.print("\t");
Serial.print(ypr[1] * 180/M_PI);
Serial.print("\t");
Serial.println(ypr[2] * 180/M_PI);
int resultant[] = {posR[0] - posG[0], posR[1] - posG[1], posR[2] - posG[2]};
float resultant_mag = sqrt(pow(resultant[0],2) + pow(resultant[1],2) + pow(resultant[2],2));
float angle_needed[] = {acos(resultant[0]/resultant_mag) * 180.0 / PI, acos(resultant[1]/resultant_mag) * 180.0 / PI, acos(resultant[2]/resultant_mag) * 180.0 / PI};
if (angle_needed[0] > ypr[0]){
Serial.print("Turn positive in \t");
} else {
Serial.print("Turn negative in x \t");
}
if (angle_needed[1] > ypr[1]){
Serial.print("Turn positive in y \t");
} else {
Serial.print("Turn negative in y \t");
}
if (angle_needed[2] > ypr[2]){
Serial.print("Turn positive in z\t");
} else {
Serial.print("Turn negative in z\t");
}
#endif
}
#else
#include <Servo.h>
#define boardVolt 5.0 // if microcontroller = 5V then max Analog = 1023 else its const char outputFormat[]
Servo myservo; // create servo object to control a servo
#endif
#include <time.h>
// ========================================
// prototypes:
//=========================================
uint32_t SERVO(int threshold, int inputControl_analog, int *rotation_servo_deg, int *rotationServo_checker, uint32_t maxTime);
// ========================================
// CONSTANTS:
//=========================================
#define ServoPin 4
#define servo1_minUs 1000
#define servo1_maxUs 2000
#define servoWriteDelay 20 // time to wait until servo gets to desired position
#define rotationInputControl_threshold 6 // threshold for input to write to servo so that back&forth action doesnt occur at idle input
const int maxAnalog = (boardVolt / 5) * 1023;
const int analogZero = maxAnalog / 2;
const char outputFormat[] = R"""(
============
timer: %d seconds
===========
FOR SERVO1:
===========
servo1 raw input= %d
Servo rotation = %d degrees
Servo rotation checker = %d degrees
)""";
// ========================================
// GLOBALS:
//=========================================
int inputControl_analog = 0;
int rotationServo_checker = 0;
int rotation_servo_deg = 0;
int counter = 0;
unsigned int timer = 0;
char string[330] = {0};
// ========================================
// SETUP:
//=========================================
void setup()
{
// put your setup code here, to run once:
Serial.begin(9600);
Serial.println("\nSerial Communication Started!");
#if MC==esp32
esp32_servo.attach(ServoPin); // attaches the servo on pin 9 to the servo object
#else
myservo.attach(ServoPin); // attaches the servo on pin 9 to the servo object
#endif
}
// ========================================
// MAIN LOOP:
//=========================================
void loop()
{
timer = millis() / 1000;
switch (SERVO(rotationInputControl_threshold, analogRead(2), &rotation_servo_deg, &rotationServo_checker, 1000))
{
case 0:
Serial.println("servo write");
break;
case 1:
Serial.println("error with Servo; exceeds time limit given.");
break;
}
sprintf(string, outputFormat, timer, inputControl_analog, rotation_servo_deg, rotationServo_checker);
Serial.print(string);
delay(1000);
}
// ====================================
// FUNCTIONS:
//=====================================
/*
@breif: function that writes to servo
@param threshold: the abs threshold value preset to calibrate servo value a bit
@param inputControl_analog: Analog value used to control/know servo position
@param rotation_servo_deg: (return/outputted variable) servo position in degrees
@param rotationServo_checker: (outputted variable) old servo angle used with current rotation angle to see if writing should occur(if theres an actual value change)
@param maxTime: maximum wait time for the function to run until function termination
@return 0-on servo write success, 1-on failure(took too long),2-on no servo write
*/
uint32_t SERVO(int threshold, int inputControl_analog, int *rotation_servo_deg, int *rotationServo_checker, uint32_t maxTime)
{
uint32_t start = millis();
while (millis() - start <= maxTime) // added a limit to how long we'll wait before moving on
{
*rotation_servo_deg = map(inputControl_analog, 0, maxAnalog, 0, 180); // scale it to use it with the servo (value between 0 and 180)
if (abs(*rotation_servo_deg - *rotationServo_checker) >= threshold) // only writes if last value within threshold != new value:
{
esp32_servo.write(*rotation_servo_deg);
delay(servoWriteDelay);
*rotationServo_checker = *(rotation_servo_deg);
return 0;
}
else
{
goto servoNotWriteBreak;
}
}
return 1;
servoNotWriteBreak: // break initialized when servo doesnt write
return 2;
}