-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path_TRIPLE.py
346 lines (308 loc) · 19.4 KB
/
_TRIPLE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from _util import *
import _Ohio_Simulator as Ohio
import _RL.FQE as FQE_module
import _RL.FQI as FQI
reload(Ohio)
reload(FQE_module)
reload(FQI)
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
from _density import omega_SA, omega_SASA
import _RL.sampler as sampler
reload(omega_SA)
reload(omega_SASA)
import tensorflow as tf
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
tf.keras.backend.set_floatx('float64')
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
################################################################################################################################################################################################################################################################################################################################################################################################################################################
class ARE():
""" ADAPTIVE, EFFICIENT AND ROBUST OFF-POLICY EVALUATION
for a dataset and a given policy
, estimate the components (Q, omega, omega_star)
, and construct the doubly, triply, ... robust estimators for the itegrated value
"""
def __init__(self, trajs, pi, eval_N = 1000, gpu_number = 0, verbose = 0
, L = 2, incomplete_ratio = 20, sepe_A = 0, A_range = [0, 1, 2, 3, 4]
, gamma = .9):
self.trajs = trajs # data: T transition tuple for N trajectories
self.S, self.A, self.R, self.SS = [np.array([item[i] for traj in trajs for item in traj]) for i in range(4)]
self.N, self.T, self.L = len(trajs), len(trajs[0]), L
self.S_dims = len(np.atleast_1d(trajs[0][0][0]))
self.A_range = arr(A_range).astype(np.float64) #set(self.A)
self.num_A = len(self.A_range)
self.gamma = gamma
self.pi = pi
self.gpu_number = gpu_number
self.alphas = alphas = [0.05, 0.1]
self.z_stats = [sp.stats.norm.ppf((1 - alpha / 2)) for alpha in self.alphas]
self.split_ind = sample_split(self.L, self.N) # split_ind[k] = {"train_ind" : i, "test_ind" : j}
self.eval_N = eval_N
self.sepe_A = sepe_A
self.verbose = verbose
self.incomplete_ratio = incomplete_ratio
self.value_funcs = []
self.omegas = []
self.omegas_values = []
self.omegas_star = []
self.omegas_star_values = []
self.Q_values = {}
self.DR = {}
self.raw_Qs = zeros(self.L)
self.psi_it = []
self.IS_it = []
self.psi2_it = []
############################################################################################################################
########################################### The three main components #####################################################
############################################################################################################################
def est_Q(self, verbose = 1, test_freq = 10, **FQE_paras):
""" Q_func(self, S, A = None)
self.ohio_eval.init_state
"""
#########
for k in range(self.L):
curr_time = now()
##################
value_func = FQE_module.FQE(policy = self.pi # policy to be evaluated
, num_actions = self.num_A, gamma = self.gamma, init_states = self.init_S # used for evaluation
, gpu_number = self.gpu_number, **FQE_paras)
value_func.train([self.trajs[i] for i in self.split_ind[k]["train_ind"]], verbose = verbose, test_freq = test_freq)
###########################
init_V = value_func.init_state_value(init_states = self.init_S)
### the behav value is significant affected by the initial
## stationary?
train_traj = [self.trajs[i] for i in self.split_ind[k]["train_ind"]]
disc_w_init = mean([sum([SA[2] * self.gamma ** t for t, SA in enumerate(traj)]) for traj in train_traj])
S, A, R, SS = [np.array([item[i] for traj in train_traj for item in traj]) for i in range(4)]
disc_w_all = np.mean(R / (1 - self.gamma))
self.raw_Qs[k] = np.mean(init_V)
self.value_funcs.append(value_func)
S, A, R, SS = [np.array([item[i] for traj in [self.trajs[j] for j in self.split_ind[k]["test_ind"]] for item in traj]) for i in range(4)]
Q_S = self.value_funcs[k].Q_func(S, A)
Q_SS = self.value_funcs[k].Q_func(SS, self.pi.get_A(SS))
sampled_Qs = self.value_funcs[k].Q_func(self.init_S, self.pi.get_A(self.init_S))
self.Q_values[k] = {"Q_S" : Q_S.copy(), "Q_SS" : Q_SS.copy(), "sampled_Qs" : sampled_Qs.copy()}
if self.verbose:
printR("behav value: disc_w_init = {:.2f} and disc_w_all = {:.2f}".format(disc_w_init, disc_w_all))
printR("OPE init_Q: mean = {:.2f} and std = {:.2f}".format(np.mean(init_V)
, np.std(init_V) / np.sqrt(len(self.init_S))))
printG("<------------- FQE for fold {} DONE! Time cost = {:.1f} minutes ------------->".format(k, (now() - curr_time) / 60))
#########
self.raw_Q = mean(self.raw_Qs)
def load_Q(self, Q_values = None):
self.raw_Qs = Q_values["raw_Qs"]
self.Q_values = Q_values["Q_values"]
self.raw_Q = mean(self.raw_Qs)
def est_w(self, h_dims = 32, max_iter = 100, batch_size = 32, lr = 0.0002, print_freq = 20, tolerance = 5, rep_loss = 3):
for k in range(self.L):
curr_time = now()
###
omega_func = omega_SA.VisitationRatioModel_init_SA(replay_buffer = sampler.SimpleReplayBuffer(trajs = [self.trajs[i] for i in self.split_ind[k]["train_ind"]])
, target_policy = self.pi, A_range = self.A_range, h_dims = h_dims
, lr = lr, gpu_number = self.gpu_number, sepe_A = self.sepe_A)
omega_func.fit(batch_size = batch_size, gamma = self.gamma, max_iter = max_iter
, print_freq = print_freq, tolerance= tolerance, rep_loss = rep_loss)
###
S, A, R, SS = [np.array([item[i] for traj in [self.trajs[j] for j in self.split_ind[k]["test_ind"]] for item in traj]) for i in range(4)]
#########
omega = omega_func.model.predict_4_VE(inputs = tf.concat([S, A[:,np.newaxis]], axis=-1)) # (NT,)
omega = np.squeeze(omega)
if self.verbose:
printG("<------------- omega estimation for fold {} DONE! Time cost = {:.1f} minutes ------------->".format(k, (now() - curr_time) / 60))
self.omegas_values.append(omega)
self.omegas.append(omega_func.model)
def est_IS(self):
# use to construct G() and so the original value estimator
#########################
for k in range(self.L):
S, A, R, SS = [np.array([item[i] for traj in [self.trajs[j] for j in self.split_ind[k]["test_ind"]] for item in traj]) for i in range(4)]
################################
omega = self.omegas_values[k]
ISs = (omega * R) / (1 - self.gamma) / np.mean(omega)
if self.verbose:
printR("IS for fold {} = {:.2f}".format(k, np.mean(ISs)))
self.IS_it.append(ISs)
self.IS_V = self.cal_metric(self.IS_it)
def est_cond_w(self, h_dims = 32, max_iter = 100, batch_size = 32, print_freq = 20, lr = 0.0002, tolerance= 5, rep_loss = 3):
for k in range(self.L):
curr_time = now()
### fit
omega_func = omega_SASA.VisitationRatioModel_init_SASA(replay_buffer = sampler.SimpleReplayBuffer(trajs = [self.trajs[i] for i in self.split_ind[k]["train_ind"]])
, target_policy = self.pi, A_range = self.A_range, h_dims = h_dims, gpu_number = self.gpu_number
, lr = lr, sepe_A = self.sepe_A)
omega_func.fit(batch_size = batch_size, gamma = self.gamma, max_iter = max_iter, print_freq = print_freq
, tolerance= tolerance, rep_loss = rep_loss)
if self.verbose:
printG("<------------- omega* estimation for fold {} DONE! Time cost = {:.1f} minutes ------------->".format(k, (now() - curr_time) / 60))
self.omegas_star.append(omega_func.model)
############################################################################################################################
########################################### Value Estimators #####################################################
############################################################################################################################
# store the previous one and do average in the next to debias the previous one.
def est_double_robust(self):
# use to construct G() and so the original value estimator
#########################
for k in range(self.L):
S, A, R, SS = [np.array([item[i] for traj in [self.trajs[j] for j in self.split_ind[k]["test_ind"]] for item in traj]) for i in range(4)]
################################
omega = self.omegas_values[k]
Q_S = self.Q_values[k]["Q_S"]
# the below one is w.r.t deterministic policy pi(); can be updated with the weighted version
Q_SS = self.Q_values[k]["Q_SS"]
bellman_error = R + self.gamma * Q_SS - Q_S
Q_debias = np.squeeze(omega) * bellman_error / (1 - self.gamma)
######### integrated_Q #########
# how to use?
sampled_Qs = self.Q_values[k]["sampled_Qs"]
integrated_Q = np.mean(sampled_Qs)
if self.verbose:
printR("integrated_Q for fold {} = {:.2f}".format(k, integrated_Q))
######### Putting together #########
self.psi_it.append(Q_debias + integrated_Q)
######### used for TR #########
self.DR[k] = {"Q_S" : self.Q_values[k]["Q_S"], "Q_SS" : self.Q_values[k]["Q_SS"]
, "sampled_Qs" : self.Q_values[k]["sampled_Qs"], "bellman_error" : bellman_error # (NT, )
}
############## cal_metric ##############
self.DR_V = self.cal_metric(self.psi_it)
if self.verbose:
for k in range(self.L):
print("DR for fold {} = {:.3f}".format(k, mean(self.psi_it[k])))
printR("DR: est = {:.2f}, sigma = {:.2f}".format(self.DR_V["V"], self.DR_V["sigma"]))
def est_triply_robust(self):
self.cond_X_on_S, self.cond_X_on_SS, self.cond_X_on_init_S = {}, {}, {}
self.cond_X_on_S_idx, self.cond_X_on_SS_idx, self.cond_X_on_init_S_idx = {}, {}, {}
self.Q2_S_debiased, self.Q2_SS_debiased, self.Q2_S_init_S_debiased = {}, {}, {}
self.large = {"Q2_S_debiased_bef" : {}
, "Q2_SS_debiased_bef" : {}
, "Q2_init_S_debiased_bef" : {}}
self.size = len(self.S) // self.incomplete_ratio // self.L
#########################
for k in range(self.L):
curr_time = now()
# debias for each Q
############### re-define the three Q-related terms ###############
S, A, R, SS = [np.array([item[i] for traj in [self.trajs[j] for j in self.split_ind[k]["test_ind"]] for item in traj]) for i in range(4)]
n = len(S)
X = np.concatenate([S, A[:,np.newaxis]], axis=-1)
############### omega: w(S', A'; S) ###############
def get_cond_w(main_SA):
m = len(main_SA)
np.random.seed(42)
# used_X_idx = [np.random.choice(n, size = size) + i * n for i in range(m)]
used_X_idx = [np.random.choice(n, size = self.size) for i in range(m)]
used_X_idx_conc = np.concatenate([used_X_idx[i] + i * n for i in range(m)])
X_t = np.vstack([X[used_X_idx[i]] for i in range(m)])
SASA = np.hstack([X_t, np.repeat(main_SA, self.size, axis=0)])
omega_star = self.omegas_star[k].predict_4_VE(SASA) # n2
omega_star = np.squeeze(omega_star)
omega_star = omega_star.reshape(m, self.size, order = "C") # "F"
omega_star = omega_star / np.mean(omega_star, 1, keepdims = True)
return omega_star, used_X_idx
self.cond_X_on_S[k], self.cond_X_on_S_idx[k] = get_cond_w(X)
SSA = np.concatenate([SS, self.pi.get_A(SS)[:,np.newaxis]], axis=-1)
self.cond_X_on_SS[k], self.cond_X_on_SS_idx[k] = get_cond_w(SSA)
init_S_A = np.concatenate([self.init_S, self.pi.get_A(self.init_S)[:,np.newaxis]], axis=-1)
self.cond_X_on_init_S[k], self.cond_X_on_init_S_idx[k] = get_cond_w(init_S_A)
# printG("<------------- TR density estimation for fold {} DONE! Time cost = {:.1f} minutes ------------->".format(k, (now() - curr_time) / 60))
def get_debiased_Q(Q_before_debias, omega_star, idx = None):
"""
input: Q functions and conditional density
output: debiased Q function
m: len of S, to be debiased
n: sample size, Q_debias, the bellman error term
"""
m = len(omega_star)
##### Q^(2)(S, A)
# repeat into n2, multiply with omega, and calculate the average
Q2_S_debias = np.repeat(self.DR[k]["bellman_error"], m, axis=0).reshape(m, n, order = "F") / (1 - self.gamma) # n2. tile is for t = 0, repeat is for do average
Q2_S_debias = arr([Q2_S_debias[i, idx[i]] for i in range(len(Q2_S_debias))])
Q2_S_debias_bef = omega_star * Q2_S_debias # n2. tile is for t = 0, repeat is for do average
# do average
Q2_S_debias = np.mean(Q2_S_debias_bef, 1) # n
# debiased
Q2_S_debiased = Q_before_debias + Q2_S_debias
return Q2_S_debiased, Q_before_debias[:, np.newaxis] + Q2_S_debias_bef
self.Q2_S_debiased[k], self.large["Q2_S_debiased_bef"][k] = get_debiased_Q(Q_before_debias = self.DR[k]["Q_S"], omega_star = self.cond_X_on_S[k], idx = self.cond_X_on_S_idx[k]) # (NT, )
self.Q2_SS_debiased[k], self.large["Q2_SS_debiased_bef"][k] = get_debiased_Q(Q_before_debias = self.DR[k]["Q_SS"], omega_star = self.cond_X_on_SS[k], idx = self.cond_X_on_SS_idx[k]) # (NT, )
self.Q2_S_init_S_debiased[k], self.large["Q2_init_S_debiased_bef"][k] = get_debiased_Q(Q_before_debias = self.DR[k]["sampled_Qs"], omega_star = self.cond_X_on_init_S[k], idx = self.cond_X_on_init_S_idx[k])
## construct the DR with debiased Qs
omega = self.omegas_values[k]
omega /= np.mean(omega)
self.Q_debias = omega * (R + self.gamma * self.Q2_SS_debiased[k] - self.Q2_S_debiased[k])
self.Q_debias /= (1 - self.gamma)
self.integrated_Q = np.mean(self.Q2_S_init_S_debiased[k])
######### Putting together #########
self.psi2_it.append(self.Q_debias + self.integrated_Q)
if self.verbose:
printG("<------------- TR for fold {} DONE! Time cost = {:.1f} minutes ------------->".format(k, (now() - curr_time) / 60))
#########################
self.TR_V = self.cal_metric(self.psi2_it)
if self.verbose:
for k in range(self.L):
print("TR for fold {} = {:.3f}, with integrated_Q = {:.3f}".format(k, mean(self.psi2_it[k])
, np.mean(self.Q2_S_init_S_debiased[k])))
####################################################################################################
def est_quad_robust(self):
# quadruple; infinite
self.Q3_S_debiased, self.Q3_SS_debiased, self.Q3_S_init_S_debiased = {}, {}, {}
self.psi3_it = []
self.integrated_Q2 = {}
for k in range(self.L):
S, A, R, SS = [np.array([item[i] for traj in [self.trajs[j] for j in self.split_ind[k]["test_ind"]] for item in traj]) for i in range(4)]
n = len(S)
X = np.concatenate([S, A[:,np.newaxis]], axis=-1)
Q2_bellman = np.repeat(np.expand_dims(R, 1), self.size, axis = 1) + self.gamma * self.large["Q2_SS_debiased_bef"][k] - self.large["Q2_S_debiased_bef"][k] # [i', i] = [X, X] = [NT, NT]
"""
bef: [S, X], [0, i]
bellman: [X, X], [i', i]
omega: [S, X], [0, i']
duplication exists here
"""
def debias(bef, idx, omega_star):
return np.mean(bef + np.vstack([a[np.newaxis, :].dot(Q2_bellman[idx[i]]) for i, a in enumerate(omega_star)]) / n / (1 - self.gamma), 1)
self.Q3_S_debiased[k] = debias(bef = self.large["Q2_S_debiased_bef"][k], idx = self.cond_X_on_S_idx[k], omega_star = self.cond_X_on_S[k])
self.Q3_SS_debiased[k] = debias(bef = self.large["Q2_SS_debiased_bef"][k], idx = self.cond_X_on_SS_idx[k], omega_star = self.cond_X_on_SS[k])
self.integrated_Q2[k] = debias(bef = self.large["Q2_init_S_debiased_bef"][k], idx = self.cond_X_on_init_S_idx[k], omega_star = self.cond_X_on_init_S[k])
self.integrated_Q2[k] = np.mean(self.integrated_Q2[k])
omega = self.omegas_values[k]
omega /= np.mean(omega)
self.Q2_debias = omega * (R + self.gamma * self.Q3_SS_debiased[k] - self.Q3_S_debiased[k]) / (1 - self.gamma)
######### Putting together #########
self.psi3_it.append(self.Q2_debias + self.integrated_Q2[k])
self.QR_V = self.cal_metric(self.psi3_it)
if self.verbose:
for k in range(self.L):
print("QR for fold {} = {:.3f}, with integrated_Q = {:.3f}".format(k, mean(self.psi3_it[k])
, self.integrated_Q2[k]))
def is_diff(self, old, new):
old = np.concatenate(old)
new = np.concatenate(new)
diff = np.mean(new) - np.mean(old)
std = np.std(arr(new) - arr(old)) / np.sqrt(len(old))
z = np.abs(diff) / std
alpha = 0.05
if z > sp.stats.norm.ppf((1 - alpha / 2)):
return True
else:
return False
############################################################################################################################
########################################### Evaluation #####################################################
############################################################################################################################
def cal_metric(self, psi_it):
""" psi_it is a list (N, T) of value estimates """
psi_it = np.concatenate(psi_it)
V = np.mean(psi_it)
sigma = np.std(psi_it) #sqrt(np.sum((psi_it - V) ** 2) / (self.N * self.T - 1))
CIs = [[V - z_stat * (sigma / sqrt(len(psi_it))) , V + z_stat * (sigma / sqrt(len(psi_it)))]
for z_stat in self.z_stats]
metrics = {"V" : V, "sigma" : sigma / sqrt(len(psi_it))
, "CIs" : np.array(CIs)}
return metrics.copy()