-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_country.py
200 lines (180 loc) · 4.94 KB
/
parse_country.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import pandas as pd
import numpy as np
import re
import ast
import logging as log
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 100)
pd.options.mode.use_inf_as_na = True
log.basicConfig(filename="debug.log")
def findCountry(loc, co):
for countryVar in co:
countryRegex = re.compile(countryVar, re.IGNORECASE)
if countryRegex.search(str(loc), re.IGNORECASE):
LOC_Resolve_Country = co[0]
LOC_Resolve_Ostalo = loc.replace(countryVar, '')
LOC_Resolve_Ostalo = re.sub('^[^a-zA-ZčćžšđČĆŽŠĐ]*|[^a-zA-ZčćžšđČĆŽŠĐ]*$','', LOC_Resolve_Ostalo)
break
else:
LOC_Resolve_Country = "NEMA"
pass
if LOC_Resolve_Country == "NEMA":
return False
else:
return LOC_Resolve_Country, LOC_Resolve_Ostalo
def findCity(loc, ci):
LOC_Resolve_City = False
for cityVar in ci:
# log.warning(cityVar + "===" + loc)
cityRegex = re.compile(cityVar, re.IGNORECASE)
if cityRegex.search(str(loc)):
LOC_Resolve_City = ci[0]
break
else:
pass
return LOC_Resolve_City
def findDate(data):
# 12. - 14.9.1997
dateRegex_1 = re.compile(
r'^'
r'[\s.-]*'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.,]*'
r'$'
)
# 1997
dateRegex_2 = re.compile(
r'^'
r'[\s.-]*'
r'(\d+)'
r'[\s.,]*'
r'$'
)
# 2.1997.
dateRegex_3 = re.compile(
r'^'
r'[\s.-]*'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.,]*'
r'$'
)
# 30.11. - 1.12.1997
dateRegex_4 = re.compile(
r'^'
r'[\s.-]*'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.,]*'
r'$'
)
# 1.2.1997.
dateRegex_5 = re.compile(
r'^'
r'[\s.-]*'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.-]+'
r'(\d+)'
r'[\s.,]*'
r'$'
)
date_1 = dateRegex_1.match(data)
date_2 = dateRegex_2.match(data)
date_3 = dateRegex_3.match(data)
date_4 = dateRegex_4.match(data)
date_5 = dateRegex_5.match(data)
if date_1:
dateFixed = (''
+ 'OD '
+ date_1.group(1).rjust(2, '0') + '.' + date_1.group(3).rjust(2, '0') + '.'+ date_1.group(4) + '.'
+ ' DO '
+ date_1.group(2).rjust(2, '0') + '.' + date_1.group(3).rjust(2, '0') + '.'+ date_1.group(4) + '.'
)
elif date_4:
dateFixed = (''
+ 'OD '
+ date_4.group(1).rjust(2, '0') + '.' + date_4.group(2).rjust(2, '0') + '.'+ date_4.group(5) + '.'
+ ' DO '
+ date_4.group(3).rjust(2, '0') + '.' + date_4.group(4).rjust(2, '0') + '.'+ date_4.group(5) + '.'
)
elif date_5:
dateFixed = (''
+ 'OD '
+ date_5.group(1).rjust(2, '0') + '.' + date_5.group(2).rjust(2, '0') + '.'+ date_5.group(3) + '.'
+ ' DO '
+ date_5.group(1).rjust(2, '0') + '.' + date_5.group(2).rjust(2, '0') + '.'+ date_5.group(3) + '.'
)
elif date_3:
dateFixed = (''
+ 'OD '
+ date_3.group(1).rjust(2, '0') + '.' + date_3.group(2) + '.'
+ ' DO '
+ date_3.group(1).rjust(2, '0') + '.' + date_3.group(2) + '.'
)
elif date_2:
dateFixed = (''
+ 'OD '
+ date_2.group(1).rjust(4, '0') + '.'
+ 'DO '
+ date_2.group(1).rjust(4, '0') + '.'
)
else:
dateFixed = "??.??.????."
return dateFixed
def fixAll(data, co, ci):
LOC_Resolve_Country = ''
LOC_Resolve_Ostalo = ''
LOC_Resolve_City = ''
DAT_Resolve = ''
for idx, row in co.iterrows():
country = row['COUNTRY'].split(',')
findResult = findCountry(data["LOC"], country)
if findResult == False:
pass
else:
LOC_Resolve_Country = findResult[0]
LOC_Resolve_Ostalo = findResult[1]
break
# for idx2, row2 in ci.iterrows():
# city = row2['combined'].split(', ')
# findCiResult = findCity(data["LOC"], city)
# if findCiResult:
# LOC_Resolve_City = findCiResult
# break
if str(data["DAT"]) !='nan':
date = findDate(data["DAT"])
else:
date = "NONE"
DAT_Resolve = date
ret = pd.Series([DAT_Resolve, LOC_Resolve_Country, LOC_Resolve_Ostalo])
return ret
ci = pd.read_csv("DATA/cities1000.txt", nrows=1000000, sep=r"\t", engine='python')
ci['combined'] = ci.iloc[:, 1:4].apply(lambda row: str(','.join( row.values.astype(str)).split(",", 7)[:7]), axis=1).filter(ci.iloc[:,7]=="HR")
ci['combined'].to_csv("/tmp/citiesHR.csv", sep="|", quotechar="~")
# Import Skup list
df = pd.read_csv("DATA/skup.csv", nrows=1000000, quotechar='~', sep=",")
# Import Country list
co = pd.read_csv("DATA/countries.txt", nrows=1000000, quotechar='"', sep="~")
# Import City list
#ci = pd.read_csv("DATA/cities.csv", nrows=1000, quotechar='"', sep="~")
#f = open("DATA/cities.csv", "r")
df[["DAT_Resolve", "LOC_Resolve_Country", "LOC_Resolve_Ostalo"]] = df.apply(lambda x: fixAll(x, co, ci), axis=1)
df.to_csv("/tmp/bla.csv", sep="|", quotechar="~")