forked from turboderp-org/exllamav2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
123 lines (111 loc) · 4.52 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from setuptools import setup, Extension
from torch.utils import cpp_extension
from torch import version as torch_version
import os
extension_name = "exllamav2_ext"
verbose = False
ext_debug = False
precompile = 'EXLLAMA_NOCOMPILE' not in os.environ
windows = (os.name == "nt")
extra_cflags = ["/Ox"] if windows else ["-O3"]
if ext_debug:
extra_cflags += ["-ftime-report", "-DTORCH_USE_CUDA_DSA"]
extra_cuda_cflags = ["-lineinfo", "-O3"]
if torch_version.hip:
extra_cuda_cflags += ["-DHIPBLAS_USE_HIP_HALF"]
extra_compile_args = {
"cxx": extra_cflags,
"nvcc": extra_cuda_cflags,
}
setup_kwargs = {
"ext_modules": [
cpp_extension.CUDAExtension(
extension_name,
[
"exllamav2/exllamav2_ext/ext_bindings.cpp",
"exllamav2/exllamav2_ext/ext_cache.cpp",
"exllamav2/exllamav2_ext/ext_gemm.cpp",
"exllamav2/exllamav2_ext/ext_hadamard.cpp",
"exllamav2/exllamav2_ext/ext_norm.cpp",
"exllamav2/exllamav2_ext/ext_qattn.cpp",
"exllamav2/exllamav2_ext/ext_qmatrix.cpp",
"exllamav2/exllamav2_ext/ext_qmlp.cpp",
"exllamav2/exllamav2_ext/ext_quant.cpp",
"exllamav2/exllamav2_ext/ext_rope.cpp",
"exllamav2/exllamav2_ext/ext_safetensors.cpp",
"exllamav2/exllamav2_ext/ext_sampling.cpp",
"exllamav2/exllamav2_ext/cuda/h_add.cu",
"exllamav2/exllamav2_ext/cuda/h_gemm.cu",
"exllamav2/exllamav2_ext/cuda/lora.cu",
"exllamav2/exllamav2_ext/cuda/pack_tensor.cu",
"exllamav2/exllamav2_ext/cuda/quantize.cu",
"exllamav2/exllamav2_ext/cuda/q_matrix.cu",
"exllamav2/exllamav2_ext/cuda/q_attn.cu",
"exllamav2/exllamav2_ext/cuda/q_mlp.cu",
"exllamav2/exllamav2_ext/cuda/q_gemm.cu",
"exllamav2/exllamav2_ext/cuda/rms_norm.cu",
"exllamav2/exllamav2_ext/cuda/head_norm.cu",
"exllamav2/exllamav2_ext/cuda/layer_norm.cu",
"exllamav2/exllamav2_ext/cuda/rope.cu",
"exllamav2/exllamav2_ext/cuda/cache.cu",
"exllamav2/exllamav2_ext/cuda/util.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/kernel_select.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_gptq_1.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_gptq_2.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_gptq_3.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_exl2_1a.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_exl2_1b.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_exl2_2a.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_exl2_2b.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_exl2_3a.cu",
"exllamav2/exllamav2_ext/cuda/comp_units/unit_exl2_3b.cu",
"exllamav2/exllamav2_ext/cpp/quantize_func.cpp",
"exllamav2/exllamav2_ext/cpp/profiling.cpp",
"exllamav2/exllamav2_ext/cpp/generator.cpp",
"exllamav2/exllamav2_ext/cpp/sampling.cpp",
"exllamav2/exllamav2_ext/cpp/sampling_avx2.cpp",
"exllamav2/exllamav2_ext/cpp/safetensors.cpp"
],
extra_compile_args=extra_compile_args,
libraries=["cublas"] if windows else [],
)],
"cmdclass": {"build_ext": cpp_extension.BuildExtension}
} if precompile else {}
version_py = {}
with open("exllamav2/version.py", encoding = "utf8") as fp:
exec(fp.read(), version_py)
version = version_py["__version__"]
print("Version:", version)
# version = "0.0.5"
setup(
name = "exllamav2",
version = version,
packages = [
"exllamav2",
"exllamav2.generator",
# "exllamav2.generator.filters",
# "exllamav2.server",
# "exllamav2.exllamav2_ext",
# "exllamav2.exllamav2_ext.cpp",
# "exllamav2.exllamav2_ext.cuda",
# "exllamav2.exllamav2_ext.cuda.quant",
],
url = "https://github.com/turboderp/exllamav2",
license = "MIT",
author = "turboderp",
install_requires = [
"pandas",
"ninja",
"fastparquet",
"torch>=2.2.0",
"safetensors>=0.3.2",
"sentencepiece>=0.1.97",
"pygments",
"websockets",
"regex",
"numpy"
],
include_package_data = True,
verbose = verbose,
**setup_kwargs,
)