-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFastNoise.h
315 lines (238 loc) · 13.8 KB
/
FastNoise.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#pragma once
#include "CoreMinimal.h"
// FastNoise.h
//
// MIT License
//
// Copyright(c) 2017 Jordan Peck
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// The developer's email is [email protected] (for great email, take
// off every 'zix'.)
//
// VERSION: 0.4.1
#ifndef FASTNOISE_H
#define FASTNOISE_H
// Uncomment the line below to use doubles throughout FastNoise instead of floats
//#define FN_USE_DOUBLES
#define FN_CELLULAR_INDEX_MAX 3
#ifdef FN_USE_DOUBLES
typedef double FN_DECIMAL;
#else
typedef float FN_DECIMAL;
#endif
class FastNoise
{
public:
explicit FastNoise(int seed = 1337) { SetSeed(seed); CalculateFractalBounding(); }
enum NoiseType { Value, ValueFractal, Perlin, PerlinFractal, Simplex, SimplexFractal, Cellular, WhiteNoise, Cubic, CubicFractal };
enum Interp { Linear, Hermite, Quintic };
enum FractalType { FBM, Billow, RigidMulti };
enum CellularDistanceFunction { Euclidean, Manhattan, Natural };
enum CellularReturnType { CellValue, NoiseLookup, Distance, Distance2, Distance2Add, Distance2Sub, Distance2Mul, Distance2Div };
// Sets seed used for all noise types
// Default: 1337
void SetSeed(int seed);
// Returns seed used for all noise types
int GetSeed() const { return m_seed; }
// Sets frequency for all noise types
// Default: 0.01
void SetFrequency(FN_DECIMAL frequency) { m_frequency = frequency; }
// Returns frequency used for all noise types
FN_DECIMAL GetFrequency() const { return m_frequency; }
// Changes the interpolation method used to smooth between noise values
// Possible interpolation methods (lowest to highest quality) :
// - Linear
// - Hermite
// - Quintic
// Used in Value, Perlin Noise and Position Warping
// Default: Quintic
void SetInterp(Interp interp) { m_interp = interp; }
// Returns interpolation method used for supported noise types
Interp GetInterp() const { return m_interp; }
// Sets noise return type of GetNoise(...)
// Default: Simplex
void SetNoiseType(NoiseType noiseType) { m_noiseType = noiseType; }
// Returns the noise type used by GetNoise
NoiseType GetNoiseType() const { return m_noiseType; }
// Sets octave count for all fractal noise types
// Default: 3
void SetFractalOctaves(int octaves) { m_octaves = octaves; CalculateFractalBounding(); }
// Returns octave count for all fractal noise types
int GetFractalOctaves() const { return m_octaves; }
// Sets octave lacunarity for all fractal noise types
// Default: 2.0
void SetFractalLacunarity(FN_DECIMAL lacunarity) { m_lacunarity = lacunarity; }
// Returns octave lacunarity for all fractal noise types
FN_DECIMAL GetFractalLacunarity() const { return m_lacunarity; }
// Sets octave gain for all fractal noise types
// Default: 0.5
void SetFractalGain(FN_DECIMAL gain) { m_gain = gain; CalculateFractalBounding(); }
// Returns octave gain for all fractal noise types
FN_DECIMAL GetFractalGain() const { return m_gain; }
// Sets method for combining octaves in all fractal noise types
// Default: FBM
void SetFractalType(FractalType fractalType) { m_fractalType = fractalType; }
// Returns method for combining octaves in all fractal noise types
FractalType GetFractalType() const { return m_fractalType; }
// Sets distance function used in cellular noise calculations
// Default: Euclidean
void SetCellularDistanceFunction(CellularDistanceFunction cellularDistanceFunction) { m_cellularDistanceFunction = cellularDistanceFunction; }
// Returns the distance function used in cellular noise calculations
CellularDistanceFunction GetCellularDistanceFunction() const { return m_cellularDistanceFunction; }
// Sets return type from cellular noise calculations
// Note: NoiseLookup requires another FastNoise object be set with SetCellularNoiseLookup() to function
// Default: CellValue
void SetCellularReturnType(CellularReturnType cellularReturnType) { m_cellularReturnType = cellularReturnType; }
// Returns the return type from cellular noise calculations
CellularReturnType GetCellularReturnType() const { return m_cellularReturnType; }
// Noise used to calculate a cell value if cellular return type is NoiseLookup
// The lookup value is acquired through GetNoise() so ensure you SetNoiseType() on the noise lookup, value, Perlin or simplex is recommended
void SetCellularNoiseLookup(FastNoise* noise) { m_cellularNoiseLookup = noise; }
// Returns the noise used to calculate a cell value if the cellular return type is NoiseLookup
FastNoise* GetCellularNoiseLookup() const { return m_cellularNoiseLookup; }
// Sets the 2 distance indices used for distance2 return types
// Default: 0, 1
// Note: index0 should be lower than index1
// Both indices must be >= 0, index1 must be < 4
void SetCellularDistance2Indices(int cellularDistanceIndex0, int cellularDistanceIndex1);
// Returns the 2 distance indices used for distance2 return types
void GetCellularDistance2Indices(int& cellularDistanceIndex0, int& cellularDistanceIndex1) const;
// Sets the maximum distance a cellular point can move from its grid position
// Setting this high will make artifacts more common
// Default: 0.45
void SetCellularJitter(FN_DECIMAL cellularJitter) { m_cellularJitter = cellularJitter; }
// Returns the maximum distance a cellular point can move from its grid position
FN_DECIMAL GetCellularJitter() const { return m_cellularJitter; }
// Sets the maximum warp distance from original location when using GradientPerturb{Fractal}(...)
// Default: 1.0
void SetGradientPerturbAmp(FN_DECIMAL gradientPerturbAmp) { m_gradientPerturbAmp = gradientPerturbAmp; }
// Returns the maximum warp distance from original location when using GradientPerturb{Fractal}(...)
FN_DECIMAL GetGradientPerturbAmp() const { return m_gradientPerturbAmp; }
//2D
FN_DECIMAL GetValue(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetValueFractal(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetPerlin(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetSimplex(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetCellular(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetWhiteNoiseInt(int x, int y) const;
FN_DECIMAL GetCubic(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL GetNoise(FN_DECIMAL x, FN_DECIMAL y) const;
void GradientPerturb(FN_DECIMAL& x, FN_DECIMAL& y) const;
void GradientPerturbFractal(FN_DECIMAL& x, FN_DECIMAL& y) const;
//3D
FN_DECIMAL GetValue(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetValueFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetPerlin(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetWhiteNoiseInt(int x, int y, int z) const;
FN_DECIMAL GetCubic(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL GetNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
void GradientPerturb(FN_DECIMAL& x, FN_DECIMAL& y, FN_DECIMAL& z) const;
void GradientPerturbFractal(FN_DECIMAL& x, FN_DECIMAL& y, FN_DECIMAL& z) const;
//4D
FN_DECIMAL GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const;
FN_DECIMAL GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const;
FN_DECIMAL GetWhiteNoiseInt(int x, int y, int z, int w) const;
private:
unsigned char m_perm[512];
unsigned char m_perm12[512];
int m_seed = 1337;
FN_DECIMAL m_frequency = FN_DECIMAL(0.01);
Interp m_interp = Quintic;
NoiseType m_noiseType = Simplex;
int m_octaves = 3;
FN_DECIMAL m_lacunarity = FN_DECIMAL(2);
FN_DECIMAL m_gain = FN_DECIMAL(0.5);
FractalType m_fractalType = FBM;
FN_DECIMAL m_fractalBounding;
CellularDistanceFunction m_cellularDistanceFunction = Euclidean;
CellularReturnType m_cellularReturnType = CellValue;
FastNoise* m_cellularNoiseLookup = nullptr;
int m_cellularDistanceIndex0 = 0;
int m_cellularDistanceIndex1 = 1;
FN_DECIMAL m_cellularJitter = FN_DECIMAL(0.45);
FN_DECIMAL m_gradientPerturbAmp = FN_DECIMAL(1);
void CalculateFractalBounding();
//2D
FN_DECIMAL SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleSimplexFractalBlend(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleCellular(FN_DECIMAL x, FN_DECIMAL y) const;
FN_DECIMAL SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y) const;
void SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL& x, FN_DECIMAL& y) const;
//3D
FN_DECIMAL SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
FN_DECIMAL SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const;
void SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL& x, FN_DECIMAL& y, FN_DECIMAL& z) const;
//4D
FN_DECIMAL SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const;
inline unsigned char Index2D_12(unsigned char offset, int x, int y) const;
inline unsigned char Index3D_12(unsigned char offset, int x, int y, int z) const;
inline unsigned char Index4D_32(unsigned char offset, int x, int y, int z, int w) const;
inline unsigned char Index2D_256(unsigned char offset, int x, int y) const;
inline unsigned char Index3D_256(unsigned char offset, int x, int y, int z) const;
inline unsigned char Index4D_256(unsigned char offset, int x, int y, int z, int w) const;
inline FN_DECIMAL ValCoord2DFast(unsigned char offset, int x, int y) const;
inline FN_DECIMAL ValCoord3DFast(unsigned char offset, int x, int y, int z) const;
inline FN_DECIMAL GradCoord2D(unsigned char offset, int x, int y, FN_DECIMAL xd, FN_DECIMAL yd) const;
inline FN_DECIMAL GradCoord3D(unsigned char offset, int x, int y, int z, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd) const;
inline FN_DECIMAL GradCoord4D(unsigned char offset, int x, int y, int z, int w, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd, FN_DECIMAL wd) const;
};
#endif