forked from mzbac/mlx-moe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlora.py
98 lines (73 loc) · 2.55 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import random
from typing import Tuple
from mlx_lm.lora import LoRALinear
from mlx.utils import tree_flatten
from mlx_lm.tuner.trainer import TrainingArgs, train
import mlx.optimizers as optim
from utils import load
import json
from pathlib import Path
class Dataset:
def __init__(self, data):
self._data = data
def __getitem__(self, idx: int):
return self._data[idx]
def __len__(self):
return len(self._data)
def load_dataset(path: str, train_split: float = 0.8) -> Tuple[Dataset, Dataset]:
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
with open(path, "r") as fid:
file_content = fid.read()
data = json.loads(file_content)
combined_data = [
f'Instruct: {item["instruction"]}\nOutput: {item["output"]}'
for item in data
]
random.shuffle(combined_data)
split_idx = int(len(combined_data) * train_split)
train_data = combined_data[:split_idx]
val_data = combined_data[split_idx:]
train_dataset = Dataset(train_data)
val_dataset = Dataset(val_data)
return train_dataset, val_dataset
def main():
train_dataset_path = (
"./data/WizardLM/WizardLM_evol_instruct_70k/alpaca_evol_instruct_70k.json"
)
model_path = "./mlx_model"
model, tokenizer = load(model_path)
train_dst, valid_dst = load_dataset(train_dataset_path)
model.freeze()
for l in model.model.layers:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj, r=16, lora_alpha=32)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj, r=16, lora_alpha=32)
l.block_sparse_moe.gate = LoRALinear.from_linear(l.block_sparse_moe.gate, r=16, lora_alpha=32)
# resume training from a checkpoint
# model.load_weights('adapters.npz', strict=False)
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
print(f"Total parameters {p:.3f}M")
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
print(f"Trainable parameters {p:.3f}M")
trainingArgs = TrainingArgs(
batch_size=1,
iters=9000,
val_batches=10,
steps_per_report=10,
steps_per_eval=200,
steps_per_save=200,
adapter_file="adapters.npz",
max_seq_length=2048,
)
model.train()
opt = optim.Adam(learning_rate=1e-5)
train(
model=model,
tokenizer=tokenizer,
args=trainingArgs,
optimizer=opt,
train_dataset=train_dst,
val_dataset=valid_dst,
)
main()