-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcheck_dataloader.py
73 lines (56 loc) · 2.61 KB
/
check_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import numpy as np
import torch
from pathlib import Path
from tqdm import tqdm
from torch.utils.data import Dataset, ConcatDataset, DataLoader, random_split
from dragonfruitvp.data.custom_dataset import CompetitionDataset
def check_mask_integrity():
counter = 0
directory = './dataset/hidden'
limit = -1
video_folders = [str(f) for f in sorted(Path(directory).iterdir()) if f.is_dir()][:limit]
# true_names = [f'video_{i}' for i in range(15000, 20000)]
# diff = set(true_names) - set(video_folders)
# print(video_folders)
# print(diff)
print(len(video_folders))
# for index in tqdm(range(len(video_folders))):
# masks_dir = video_folders[index].joinpath("mask.npy")
# masks = np.load(masks_dir)
# counter += masks.shape[0]
# # print(masks.shape)
# print(counter)
if __name__ == "__main__":
# base_datadir = './dataset'
# limit = -1
# train_set = CompetitionDataset(os.path.join(base_datadir, 'train'), dataset_type='labeled', limit=limit) # we treat trainset as unlabeled here
# val_set = CompetitionDataset(os.path.join(base_datadir, 'val'), dataset_type='labeled', limit=limit)
# unlabeled_set = CompetitionDataset(os.path.join(base_datadir, 'unlabeled'), dataset_type='labeled', limit=limit)
# # concat train and unet labeled unlabeled set together
# augmented_set = ConcatDataset([train_set, unlabeled_set])
# num_workers = 1
# BATCH_SIZE = 6
# dataloader_train = torch.utils.data.DataLoader(
# train_set, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, num_workers=num_workers
# )
# dataloader_val = torch.utils.data.DataLoader(
# val_set, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, num_workers=num_workers
# )
# dataloader_unlabeled = torch.utils.data.DataLoader(
# unlabeled_set, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, num_workers=num_workers
# )
# dataloader_augmented = torch.utils.data.DataLoader(
# augmented_set, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, num_workers=num_workers
# )
# hidden_set = CompetitionDataset(os.path.join(base_datadir, 'hidden'), dataset_type='hidden')
# dataloader_hidden = torch.utils.data.DataLoader(
# hidden_set, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, num_workers=num_workers
# )
# print('start checking')
# for batch, value in enumerate(dataloader_val):
# print(f'----batch {batch}----')
# check the shape of submission
result = torch.load('./team_12.pt')
print(result.shape)
# check_mask_integrity()