-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
59 lines (53 loc) · 2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from transformers import TrainingArguments, Trainer
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import accuracy_score, f1_score
from sklearn.utils import class_weight
""" Trainer Class """
class WeightedTrainer(Trainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.get("labels").long()
outputs = model(**inputs)
logits = outputs.get("logits")
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
return (loss, outputs) if return_outputs else loss
""" Define training arguments """
def define_training_args(output_dir, batch_size, num_epochs=30, gradient_accumulation_steps=1):
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=1.0e-4,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
per_device_eval_batch_size=batch_size,
gradient_checkpointing=True,
num_train_epochs=num_epochs,
warmup_ratio=0.1,
weight_decay=0.01,
logging_steps=50,
eval_steps=100,
save_steps=100,
save_total_limit=2,
load_best_model_at_end=False,
metric_for_best_model="accuracy",
fp16=True,
fp16_full_eval=True,
dataloader_num_workers=4,
dataloader_pin_memory=True,
)
return training_args
""" Define Metric """
def compute_metrics(pred):
labels = pred.label_ids
preds = np.argmax(pred.predictions, axis=1)
acc = accuracy_score(labels, preds)
f1 = f1_score(labels, preds, average='macro')
print(f"Accuracy: {acc*100:.3f}")
print(f"F1: {f1*100:.3f}")
return { 'accuracy': acc, 'f1': f1 }