-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_finetuning.py
146 lines (123 loc) · 4.57 KB
/
text_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import argparse
from datasets import load_dataset
from typing import List
import numpy as np
from sklearn.metrics import accuracy_score
def parse_args ():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='bert-base-multilingual-uncased')
parser.add_argument('--dataset_name_or_path', type=str, default='RiTA-nlp/italic-easy')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--learning_rate', type=float, default=5e-5)
parser.add_argument('--num_train_epochs', type=int, default=5)
parser.add_argument('--max_input_length', type=int, default=128)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--output_dir', type=str, default='models/')
return parser.parse_args()
args = parse_args()
dataset = load_dataset(args.dataset_name_or_path)
train_sentences = dataset["train"]["utt"]
train_labels = dataset["train"]["intent"]
val_sentences = dataset["validation"]["utt"]
val_labels = dataset["validation"]["intent"]
# find the number of unique labels
unique_labels = set(train_labels)
num_labels = len(unique_labels)
print("Number of unique labels:", num_labels)
# map labels to integers
# order labels alphabetically
label_to_int = {label: i for i, label in enumerate(sorted(unique_labels))}
int_to_label = {i: label for label, i in label_to_int.items()}
train_labels = [label_to_int[label] for label in train_labels]
val_labels = [label_to_int[label] for label in val_labels]
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, num_labels=num_labels)
safe_model_name = args.model_name_or_path.replace("/", "-")
class IntentClassificationDataset(torch.utils.data.Dataset):
def __init__(
self,
texts: List[str],
labels: List[int],
tokenizer_name_or_path: str,
max_input_length: int = 64,
):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
self.texts = texts
self.labels = labels
self.max_input_length = max_input_length
self.encodings = self.tokenizer(
self.texts,
truncation=True,
padding="max_length",
max_length=self.max_input_length,
return_tensors="pt",
)
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.encodings.items()}
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_dataset = IntentClassificationDataset(
train_sentences,
train_labels,
args.model_name_or_path,
args.max_input_length,
)
val_dataset = IntentClassificationDataset(
val_sentences,
val_labels,
args.model_name_or_path,
args.max_input_length,
)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
try:
predictions = np.argmax(predictions, axis=1)
except Exception:
print("predictions[0] shape:", predictions[0].shape)
predictions = np.argmax(predictions[0], axis=1)
return {"accuracy": accuracy_score(labels, predictions)}
training_args = TrainingArguments(
output_dir=args.output_dir + safe_model_name,
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=max(1, args.batch_size // 2),
warmup_steps=500,
weight_decay=0.01,
logging_dir="logs",
logging_steps=100,
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=args.learning_rate,
gradient_accumulation_steps=args.gradient_accumulation_steps,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
greater_is_better=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
model = trainer.model
model.save_pretrained(args.output_dir + safe_model_name + "/best_model/")
tokenizer.save_pretrained(args.output_dir + safe_model_name + "/best_model/")
'''
python ft_text.py \
--model_name_or_path bert-base-multilingual-uncased \
--dataset_name_or_path RiTA-nlp/italic-easy \
--batch_size 8 \
--learning_rate 5e-5 \
--num_train_epochs 5 \
--max_input_length 64 \
--gradient_accumulation_steps 1 \
--output_dir text_models/
'''