-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunExp_RigidArch.py
788 lines (714 loc) · 42.2 KB
/
runExp_RigidArch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures,LargestConnectedComponents
from torch_geometric.utils import segregate_self_loops,get_laplacian
from torchmetrics.functional import pairwise_cosine_similarity
import torch
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv,GATv2Conv
from torch_geometric.nn.norm import BatchNorm, PairNorm
import numpy as np
import matplotlib.pyplot as plt
import copy
import json
import pprint
import pickle
from scipy import stats
import pandas as pd
import os.path
from math import floor,ceil
import torch_geometric.transforms as T
from torch_geometric.data import Data
from torchmetrics import AUROC
path = "ExpResults_RigidArch/"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def getDataHet(datasetName,splitID=1):
print("Loading datasets as npz-file..")
data = np.load('data/heterophilous-graphs/'+datasetName+'.npz')
x = torch.tensor(data['node_features'], dtype=torch.float)
y = torch.tensor(data['node_labels'], dtype=torch.long)
edge_index = torch.tensor(data['edges'], dtype=torch.long).t().contiguous()
train_mask = torch.tensor(data['train_masks'], dtype=torch.bool).transpose(0, 1).contiguous()
val_mask = torch.tensor(data['val_masks'], dtype=torch.bool).transpose(0, 1).contiguous()
test_mask = torch.tensor(data['test_masks'], dtype=torch.bool).transpose(0, 1).contiguous()
num_classes = len(torch.unique(y))
num_targets = 1 if num_classes == 2 else num_classes
print("Converting to PyG dataset...")
data = Data(x=x, edge_index=edge_index)
data.y = y
data.num_classes = num_classes
data.num_targets = num_targets
data.train_mask = train_mask[:,splitID] #split_idx = 1, 10 splits provided in dataset
data.val_mask = val_mask[:,splitID]
data.test_mask = test_mask[:,splitID]
return data,data.num_features,data.num_classes
def getData(datasetName, dataTransform, randomLabels=False,oneHotFeatures=False,randomLabelCount=None,splitID=1):
if datasetName[:3]=='Syn': # == 'Synthetic':
synID = datasetName.split("_")[1]
with open('SyntheticData/D'+str(synID)+'.pkl', 'rb') as f:
data = pickle.load(f)
return data,data.x.shape[1],len(torch.unique(data.y))
if datasetName in ['Cora','Citeseer','Pubmed']:
dataset = Planetoid(root='data/Planetoid', name=datasetName, transform=NormalizeFeatures())
data = dataset[0]
if dataTransform=='removeIsolatedNodes':
out = segregate_self_loops(data.edge_index)
edge_index, edge_attr, loop_edge_index, loop_edge_attr = out
mask = torch.zeros(data.num_nodes, dtype=torch.bool, device=data.x.device)
mask[edge_index.view(-1)] = 1
data.train_mask = data.train_mask & mask
data.val_mask = data.val_mask & mask
data.test_mask = data.test_mask & mask
if dataTransform=='useLCC':
transformLCC = LargestConnectedComponents()
data = transformLCC(data)
if randomLabels:
if randomLabelCount==None:
data.y = torch.randint(low=0,high=len(torch.unique(data.y)),size=data.y.shape)
else:
data.y = torch.randint(low=0,high=randomLabelCount,size=data.y.shape)
if oneHotFeatures:
data.x = torch.tensor(F.one_hot(data.y).clone().detach(),dtype = torch.float32)
return data,data.x.shape[1],len(torch.unique(data.y))#dataset.num_features,dataset.num_classes
else:
s = datasetName.split("_")
if len(s)==1:
s=s+[str(splitID)]
return getDataHet(s[0],int(s[1]))
class rigid_MLP_GAT(torch.nn.Module):
def __init__(self, numLayers, layerTypes, dims, heads, concat, weightSharing, attnDropout=0,bias=False,activation='relu',useIdMap=False, useResLin=False,normalization=''):
super().__init__()
self.numLayers = numLayers
self.heads = heads
self.weightSharing = weightSharing
self.dropout = attnDropout
if activation=='relu':
self.activation = F.relu
elif activation=='elu':
self.activation = F.elu # as used previously
self.useIdMap = useIdMap
self.useResLin = useResLin
self.layerTypes = layerTypes
self.normalization = normalization
self.layers = torch.nn.ModuleList()
self.normLayers = torch.nn.ModuleList()
for j in range(self.numLayers):
indim = dims[j]
outdim= dims[j+1]
if j>0 and concat[j-1]:
indim=dims[j]*heads[j]
if concat[j]:
outdim=dims[j+1]*heads[j+1]
if layerTypes[j]=='L':
self.layers.extend([torch.nn.Linear(indim,dims[j+1],bias=bias)])
elif layerTypes[j]=='G':
self.layers.extend([GATv2Conv(indim,dims[j+1],bias=bias,
heads=heads[j+1],concat=concat[j],share_weights=weightSharing,dropout=attnDropout)])
if j<self.numLayers-1:
if normalization=='batch':
self.normLayers.extend([BatchNorm(in_channels=outdim,momentum=0.1,affine=True,track_running_stats=False)])
elif normalization=='pair':
self.normLayers.extend([PairNorm(scale_individually=False)])
if self.useIdMap:
self.residual = torch.nn.ModuleList(
[torch.nn.Linear(dims[0]*heads[0],dims[1]*heads[1],bias=False),
torch.nn.Linear(dims[self.numLayers-1]*heads[self.numLayers-1],dims[self.numLayers],bias=False)])
# self.residual = torch.nn.ModuleList(
# [torch.nn.Linear(dims[j]*heads[j],dims[j+1]*heads[j+1],bias=False) for j in [0,self.numLayers-1]])
if self.useResLin:
self.residual = torch.nn.ModuleList(
[torch.nn.Linear(dims[j],dims[j+1],bias=False) for j in range(numLayers)])
def forward(self, x, edge_index,getAttnCoef,getMetric=[False,False],adj=[None,None],masks={},classMasks=[]):
#leakyrelu for computing alphas have negative_slope=0.2 (as set in GAT and used in GATv2)
attnCoef = [0] * self.numLayers
dirEn = {k: [0] * (self.numLayers+1) for k in ['All']+list(masks.keys())}
madGlb = {k: [0] * (self.numLayers+1) for k in ['All']+list(masks.keys())}
madNbr = {k: [0] * (self.numLayers+1) for k in ['All']+list(masks.keys())}
numClasses = len(classMasks)
dirEnClassWise = torch.FloatTensor(self.numLayers+1,numClasses,numClasses)
madGlbClassWise = torch.FloatTensor(self.numLayers+1,numClasses,numClasses)
madNbrClassWise = torch.FloatTensor(self.numLayers+1,numClasses,numClasses)
with torch.no_grad():
if getMetric[0]:
dirEn['All'][0] = torch.trace(torch.mm(torch.mm(x.T,adj[0]),x))
for k,v in masks.items():
dirEn[k][0] = torch.trace(torch.mm(torch.mm(x[v,:].T,adj[0][v,:]),x)) #current: only i is train node, use all j. OR use both i,j in train set
for c1 in range(numClasses):
for c2 in range(numClasses): #replace with only upper triangle
m1 = classMasks[c1]
m2 = classMasks[c2]
dirEnClassWise[0][c1][c2]=torch.trace(torch.mm(torch.mm(x[m1,:].T,adj[0][m1,:][:,m2]),x[m2,:])) #data.y==o
#print('Check if dirEn is symmetric: ',(dirEnClassWise[0]==dirEnClassWise[0].T).all())
#torch.autograd.set_detect_anomaly(True)
if getMetric[1]:
d = 1 - pairwise_cosine_similarity(x.detach().clone(),zero_diagonal=False)
md=torch.mul(adj[1],d)
madGlb['All'][0] = torch.mean(d)
madNbr['All'][0] = torch.nanmean(torch.sum(md,axis=1)/torch.count_nonzero(adj[1],axis=1))
for k,v in masks.items():
madGlb[k][0]=torch.mean(d[v,v])
madNbr[k][0]=torch.nanmean(torch.sum(md[v,:],axis=1)/torch.count_nonzero(adj[1][v,:],axis=1))
for c1 in range(numClasses):
for c2 in range(numClasses):
m1 = classMasks[c1]
m2 = classMasks[c2]
madGlbClassWise[0][c1][c2]=torch.mean(d[m1,:][:,m2])
madNbrClassWise[0][c1][c2]=torch.nanmean(torch.sum(md[m1,:][:,m2],axis=1)/torch.count_nonzero(adj[1][m1,:][:,m2],axis=1))
# for k,v in masks.items():
# md=torch.mul(adj[1][v,:],d[v,:])
# metrics[1][k][0] = torch.nanmean(torch.sum(md,axis=1)/torch.count_nonzero(adj[1][v,:],axis=1))
for i in range(self.numLayers):#len(self.GATv2Convs)-1):
if self.layerTypes[i]=='L':
x_new = self.layers[i](x)
elif self.layerTypes[i]=='G':
x_new,a = self.layers[i](x,edge_index,return_attention_weights=getAttnCoef)
attnCoef[i] = (a[0].detach(),a[1].detach())
if self.useIdMap:
# print(i)
# print(x.shape)
# print(x_new.shape)
if i==0:#in [0,numLayers-1]:
x_new = x_new + self.residual[0](x)
elif i==self.numLayers-1:
x_new = x_new + self.residual[1](x)
else:
x_new = x + x_new
if self.useResLin:
x_new = x_new + self.residual[i](x)
x=x_new
if i <(self.numLayers-1):
if normalization!='':
x = self.normLayers[i](x)
x = self.activation(x)#x.relu() #F.relu(x,inplace=True)
if self.dropout>0:
x = F.dropout(x, p=self.dropout, training=self.training)
#x,a = self.GATv2Convs[len(self.GATv2Convs)-1](x,edge_index,return_attention_weights=getAttnCoef)
with torch.no_grad():
if getMetric[0]:
dirEn['All'][i+1] = torch.trace(torch.mm(torch.mm(x.T,adj[0]),x))
for k,v in masks.items():
dirEn[k][i+1] = torch.trace(torch.mm(torch.mm(x[v,:].T,adj[0][v,:]),x)) #current: only i is train node, use all j. OR use both i,j in train set
for c1 in range(numClasses):
for c2 in range(numClasses): #replace with only upper triangle
m1 = classMasks[c1]
m2 = classMasks[c2]
dirEnClassWise[i+1][c1][c2]=torch.trace(torch.mm(torch.mm(x[m1,:].T,adj[0][m1,:][:,m2]),x[m2,:]))
# # #dirEn[i+1] = torch.trace(torch.mm(torch.mm(x.T,adj[0]),x))
if getMetric[1]:
d = 1 - pairwise_cosine_similarity(x.detach().clone(),zero_diagonal=False)
md=torch.mul(adj[1],d)
madGlb['All'][i+1] = torch.mean(d)
madNbr['All'][i+1] = torch.nanmean(torch.sum(md,axis=1)/torch.count_nonzero(adj[1],axis=1))
for k,v in masks.items():
madGlb[k][i+1]=torch.mean(d[v,v])
madNbr[k][i+1]=torch.nanmean(torch.sum(md[v,:],axis=1)/torch.count_nonzero(adj[1][v,:],axis=1))
for c1 in range(numClasses):
for c2 in range(numClasses):
m1 = classMasks[c1]
m2 = classMasks[c2]
madGlbClassWise[i+1][c1][c2]=torch.mean(d[m1,:][:,m2])
madNbrClassWise[i+1][c1][c2]=torch.nanmean(torch.sum(md[m1,:][:,m2],axis=1)/torch.count_nonzero(adj[1][m1,:][:,m2],axis=1))
#attnCoef[len(self.GATv2Convs)-1] = (a[0].detach(),a[1].adj())
smoothnessMetrics={
'dirEn':dirEn,
'madGl':madGlb,
'madNb':madNbr,
'dirEnClassWise':dirEnClassWise,
'madGlClassWise':madGlbClassWise,
'madNbClassWise':madNbrClassWise
}
return x,attnCoef,smoothnessMetrics
def computeStatSumry(arr,quantiles):
r = {'mean': arr.mean(),
'std': arr.std()}
quantiles=torch.cat((torch.tensor([0,1],device=device),quantiles),dim=0)
p = torch.quantile(arr,quantiles)
r['min'] = p[0]
r['max'] = p[1]
for i in range(2,len(quantiles)):
r[str(int(quantiles[i]*100))+'%ile'] = p[i]
return r
def computeAlphaStatSumry(alphas,quantiles):
return [computeStatSumry(alphas[1][np.where(np.equal(alphas[0][0],alphas[0][1])==True)[0]],quantiles),
computeStatSumry(alphas[1][np.where(np.equal(alphas[0][0],alphas[0][1])==False)[0]],quantiles)]
def makeDataDimsEven(data,input_dim,output_dim):
if input_dim%2==1:
a=torch.zeros((data.x.size()[0],ceil(data.x.size()[1]/2)*2))
a[:,:input_dim] = data.x
data.x = a
input_dim+=1
output_dim=(ceil(output_dim/2))*2
return data,input_dim,output_dim
def printExpSettings(expID,expSetting):
print('Exp: '+str(expID))
for k,v in expSetting.items():
for k2,v2 in expSetting[k].items():
if(k2==expID):
print(k,': ',v2)
def set_seeds(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def initializeParams(params,initScheme,activation):#'xavierN','xavierU','kaimingN','kaimingU','LLxavierN','LLxavierU',LLkaimingN','LLkaimingU','LLortho'
numLayers = len(params)
#paramTypes = params[0].keys()
with torch.no_grad():
if(initScheme[:2]!='LL'):
for l in range(numLayers):
for f in set(params[l].keys()):
if(initScheme=='xavierN'):
torch.nn.init.xavier_normal_(params[l][f].data)
if(initScheme=='xavierU'):
torch.nn.init.xavier_uniform_(params[l][f].data)
if(initScheme=='kaimingN'):
torch.nn.init.kaiming_normal_(params[l][f].data,mode='fan_in',nonlinearity=activation)
if(initScheme=='kaimingU'):
torch.nn.init.kaiming_uniform_(params[l][f].data,mode='fan_in',nonlinearity=activation)
elif(initScheme[:2]=='LL'):
for l in range(numLayers):
if 'attn' in params[l].keys():
params[l]['attn'].data = torch.zeros(params[l]['attn'].data.shape,device=device) ##LL attnWeights are 0
for f in set(params[l].keys())-set(['attn']):
firstLayerDeltaDim = (ceil(params[0][f].data.shape[0]/2),params[0][f].data.shape[1])
finalLayerDeltaDim= (params[numLayers-1][f].data.shape[0],ceil(params[numLayers-1][f].data.shape[1]/2))
if initScheme=='LLxavierU':
firstLayerDelta = torch.nn.init.xavier_uniform_(torch.empty(firstLayerDeltaDim[0],firstLayerDeltaDim[1],device=device))
finalLayerDelta = torch.nn.init.xavier_uniform_(torch.empty(finalLayerDeltaDim[0],finalLayerDeltaDim[1],device=device))
if initScheme=='LLxavierN':
firstLayerDelta = torch.nn.init.xavier_normal_(torch.empty(firstLayerDeltaDim[0],firstLayerDeltaDim[1],device=device))
finalLayerDelta = torch.nn.init.xavier_normal_(torch.empty(finalLayerDeltaDim[0],finalLayerDeltaDim[1],device=device))
if initScheme=='LLkaimingU':
firstLayerDelta = torch.nn.init.kaiming_uniform_(torch.empty(firstLayerDeltaDim[0],firstLayerDeltaDim[1],device=device),nonlinearity=activation)
finalLayerDelta = torch.nn.init.kaiming_uniform_(torch.empty(finalLayerDeltaDim[0],finalLayerDeltaDim[1],device=device),nonlinearity=activation)
if initScheme=='LLkaimingN':
firstLayerDelta = torch.nn.init.kaiming_normal_(torch.empty(firstLayerDeltaDim[0],firstLayerDeltaDim[1],device=device),nonlinearity=activation)
finalLayerDelta = torch.nn.init.kaiming_normal_(torch.empty(finalLayerDeltaDim[0],finalLayerDeltaDim[1],device=device),nonlinearity=activation)
if initScheme=='LLortho':
firstLayerDelta = torch.nn.init.orthogonal_(torch.empty(firstLayerDeltaDim[0],firstLayerDeltaDim[1],device=device))
finalLayerDelta = torch.nn.init.orthogonal_(torch.empty(finalLayerDeltaDim[0],finalLayerDeltaDim[1],device=device))
params[0][f].data = torch.cat((firstLayerDelta,-firstLayerDelta),dim=0) #BUG CHECK
params[numLayers-1][f].data = torch.cat((finalLayerDelta,-finalLayerDelta),dim=1) #BUG CHECK
for l in range(1,numLayers-1):
for f in set(params[l].keys())-set(['attn']):
dim = params[l][f].data.shape
if initScheme=='LLxavierU':
delta = torch.nn.init.xavier_uniform_(torch.empty(ceil(dim[0]/2),ceil(dim[1]/2),device=device))
if initScheme=='LLxavierN':
delta = torch.nn.init.xavier_normal_(torch.empty(ceil(dim[0]/2),ceil(dim[1]/2),device=device))
if initScheme=='LLkaimingU':
delta = torch.nn.init.kaiming_uniform_(torch.empty(ceil(dim[0]/2),ceil(dim[1]/2),device=device),nonlinearity=activation)
if initScheme=='LLkaimingN':
delta = torch.nn.init.kaiming_normal_(torch.empty(ceil(dim[0]/2),ceil(dim[1]/2),device=device),nonlinearity=activation)
if initScheme=='LLortho':
delta = torch.nn.init.orthogonal_(torch.empty(ceil(dim[0]/2),ceil(dim[1]/2),device=device))
delta = torch.cat((delta, -delta), dim=0)
delta = torch.cat((delta, -delta), dim=1)
params[l][f].data = delta
if(initScheme=='xavrWzeroA'):
for l in range(numLayers):
torch.nn.init.zeros_(params[l]['attn'].data)
for f in set(params[l].keys())-set(['attn']):
torch.nn.init.xavier_normal_(params[l][f].data)
for l in range(numLayers):
for f in params[l].keys():
params[l][f].data.requires_grad=True #because of initialization update
return params
def scaleParams(params,scalScheme,scalHP):#'balLtoRconst','balLtoRuniform','balLtoRnormal','balRtoLconst','balRtoLuniform','balRtoLnormal'
numLayers = len(params)
#paramTypes = params[0].keys()
beta = float(scalHP[2])
with torch.no_grad():
if scalScheme in ['balLtoRconst','balLtoRuniform','balLtoRnormal']:
for f in set(params[0].keys())-set(['attn']):
incSqNorm = torch.sqrt(torch.pow(params[0][f].data,2).sum(axis=1))
if scalScheme=='balLtoRuniform':
reqRowWiseSqL2Norm = torch.randint(low=int(scalHP[0]),high=int(scalHP[1]),size=(params[0][f].data.size()[0],),device=device)
if scalScheme=='balLtoRnormal':
reqRowWiseSqL2Norm = float(scalHP[0]) + float(scalHP[1])*(torch.randn((params[0][f].data.size()[0],),device=device))
if scalScheme=='balLtoRconst':
reqRowWiseSqL2Norm = torch.full((params[0][f].data.size()[0],),float(scalHP[0]),device=device)
params[0][f].data = torch.multiply(torch.divide(params[0][f].data,incSqNorm.reshape((len(incSqNorm),1))),\
torch.sqrt(reqRowWiseSqL2Norm.reshape(len(reqRowWiseSqL2Norm),1)))
for l in range(1,numLayers):
attnSqNormReq = 0
for f in set(params[l].keys())-set(['attn']):
incSqNorm = torch.pow(params[l-1][f].data,2).sum(axis=1)
outSqNorm = torch.sqrt(torch.pow(params[l][f].data,2).sum(axis=0))
params[l][f].data = torch.multiply(torch.divide(params[l][f].data,outSqNorm.reshape((1,len(outSqNorm)))),\
torch.sqrt((incSqNorm*beta).reshape((1,len(incSqNorm)))))#torch.sqrt(min(incSqNorm))#
outSqNorm = torch.pow(params[l][f].data,2).sum(axis=0)#*torch.sqrt(min(incSqNorm))
attnSqNormReq += incSqNorm-outSqNorm
if beta==1: #beta=1 -> attnWeghts should be 0 for balanced scaling
if 'attn' in params[l-1].keys():
params[l-1]['attn'].data = torch.zeros(params[l-1]['attn'].data.shape,device=device)
else:
params[l-1]['attn'].data = torch.sqrt(attnSqNormReq).reshape(params[l-1]['attn'].data.shape)
if 'attn' in params[numLayers-1].keys():
params[numLayers-1]['attn'].data = torch.zeros(params[numLayers-1]['attn'].data.shape,device=device)
if scalScheme in ['balRtoLconst','balRtoLuniform','balRtoLnormal']:
for f in set(params[numLayers-1].keys())-set(['attn']):
outSqNorm = torch.sqrt(torch.pow(params[numLayers-1][f].data,2).sum(axis=0))
if initScheme=='balRtoLuniform':
reqColWiseSqL2Norm = torch.randint(low=int(scalHP[0]),high=int(scalHP[1]),size=(params[numLayers-1][f].data.size()[1],),device=device)
if initScheme=='balRtoLnormal':
reqColWiseSqL2Norm = float(scalHP[0]) + float(scalHP[1])*(torch.randn((params[numLayers-1][f].data.size()[1],),device=device))
if initScheme=='balRtoLconst':
reqColWiseSqL2Norm = torch.full((params[numLayers-1][f].data.size()[1],),float(scalHP[0]),device=device)
params[numLayers-1][f].data = torch.multiply(torch.divide(params[numLayers-1][f].data,outSqNorm.reshape((1,len(outSqNorm)))),\
torch.sqrt(reqColWiseSqL2Norm.reshape(1,len(reqColWiseSqL2Norm))))
for l in range(numLayers-2,-1,-1):
attnSqNormReq = 0
for f in set(params[l].keys())-set(['attn']):
outSqNorm = torch.pow(params[l+1][f].data,2).sum(axis=0)
incSqNorm = torch.sqrt(torch.pow(params[l][f].data,2).sum(axis=1))
params[l][f].data = torch.divide(params[l][f].data,incSqNorm.reshape((len(incSqNorm),1)))\
*torch.sqrt((outSqNorm*beta).reshape((len(outSqNorm),1)))#torch.sqrt(min(incSqNorm))#
incSqNorm = torch.pow(params[l][f].data,2).sum(axis=1)#*torch.sqrt(min(incSqNorm))
attnSqNormReq += incSqNorm-outSqNorm
if beta==1: #beta=1 -> attnWeghts should be 0 for balanced scaling
params[l]['attn'].data = torch.zeros(params[l-1]['attn'].data.shape,device=device)
else:
params[l]['attn'].data = torch.sqrt(attnSqNormReq).reshape(params[l]['attn'].data.shape)
params[numLayers-1]['attn'].data = torch.zeros(params[numLayers-1]['attn'].data.shape,device=device)
for l in range(numLayers):
for f in params[l].keys():
params[l][f].data.requires_grad=True
return params
def deepCopyParamsToNumpy(params):
paramsCopy = [{} for i in range(len(params))]
for l in range(len(params)):
for p in params[l].keys():
paramsCopy[l][p] = params[l][p].data.detach().cpu().numpy()
return paramsCopy
expSetting = pd.read_csv('ExpSettings_RigidArch.csv',index_col='expId').fillna('').to_dict()
# with open('finalExpIDs2.txt') as txtfile:
# expIDs = list(map(int, txtfile))
expIDs = range(1,3+1) #Add ExpIDs to run here, or define in a text file and read from it
runIDs =[]
trainLossToConverge = 0.0001
printLossEveryXEpoch = 1000
saveParamGradStatSumry = False
saveNeuronLevelL2Norms = False
saveLayerWiseForbNorms = False
saveWeightsAtMaxValAcc = False
saveNodeSmoothnessVals = False
quantiles = torch.tensor((np.array(range(1,10,1))/10),dtype=torch.float32,device=device)
qLabels = [str(int(q*100))+'%ile' for q in quantiles]
labels = ['min','max','mean','std']+qLabels
for expID in expIDs:
numRuns = int(expSetting['numRuns'][expID])
if len(runIDs)==0:
runIDs = range(numRuns) #or specify
datasetName = str(expSetting['dataset'][expID])
optim = str(expSetting['optimizer'][expID])
numLayers =int(expSetting['numLayers'][expID])
gatLayers = [int(x)-1 for x in str(expSetting['gatLayers'][expID]).split(',')] #[14,19]#,14,19]
layerTypes = ['L'] * numLayers
for i in gatLayers:
layerTypes[i]='G'
numEpochs = int(expSetting['maxEpochs'][expID])
lr = float(expSetting['initialLR'][expID])
hiddenDims = [int(expSetting['hiddenDim'][expID])] * (numLayers-1)
mulLastAttHead = bool(expSetting['mulLastAttHead'][expID])
#data input always has 1 attention head, decide for last layer
if mulLastAttHead:
heads = [1] + ([int(expSetting['attnHeads'][expID])] * (numLayers))
else:
heads = [1] + ([int(expSetting['attnHeads'][expID])] * (numLayers-1)) + [1]
concat = ([True] * (numLayers-1)) + [False] #concat attn heads for all layers except the last, avergae for last (doesn't matter when num of heads for last layer=1)
attnDropout = float(expSetting['attnDropout'][expID])
wghtDecay = float(expSetting['wghtDecay'][expID])
activation = str(expSetting['activation'][expID])
weightSharing = bool(expSetting['weightSharing'][expID])
dataTransform = str(expSetting['dataTransform'][expID]) #removeIsolatedNodes,useLCC
initScheme=str(expSetting['initScheme'][expID])
scalScheme=str(expSetting['scalScheme'][expID])
lrDecayFactor = float(expSetting['lrDecayFactor'][expID])
useIdMap = bool(expSetting['useIdMap'][expID])
useResLin = bool(expSetting['useResLin'][expID])
normalization = str(expSetting['normalization'][expID])
if lrDecayFactor<1:
lrDecayPatience = float(expSetting['lrDecayPatience'][expID])
scalHPstr = [0,0,0]
if len(str(expSetting['scalHP'][expID]))>0:
scalHPstr=[float(x) for x in str(expSetting['scalHP'][expID]).split('|')] #e.g. (low,high) for uniform, (mean,std) for normal, (const) for const. Third parameter is beta
recordAlphas = False
print('*******')
printExpSettings(expID,expSetting)
print('*******')
for run in runIDs:#range(numRuns):
print('-- RUN ID: '+str(run))
set_seeds(run)
data,input_dim,output_dim = getData(datasetName,dataTransform,splitID=run)
if output_dim==2:
auroc = AUROC(task='binary')
else:
auroc = AUROC(task='multiclass',num_classes=output_dim)
data = data.to(device)
dims = [input_dim]+hiddenDims+[output_dim]
symLapSp = None# get_laplacian(data.edge_index,normalization='sym')
symLap = None #torch.sparse.FloatTensor(symLapSp[0],symLapSp[1] , torch.Size([data.x.shape[0],data.x.shape[0]])).to_dense()
adj = None #torch.sparse.FloatTensor(data.edge_index,torch.ones(data.edge_index.shape[1],device=device), torch.Size([data.x.shape[0],data.x.shape[0]])).to_dense()
masks = {}
if saveNodeSmoothnessVals:
masks['Train']=data.train_mask
masks['Val']=data.test_mask
masks['Test']=data.test_mask
classes = torch.unique(data.y)
classMasks = [None] * len(classes)
#masks['Class']=[None] * len(classes)
for o in range(len(classes)):
classMasks[o]=data.y==classes[o]
if weightSharing:
paramTypes = ['feat','attn']
else:
paramTypes = ['feat','feat2','attn']
model = rigid_MLP_GAT(numLayers,layerTypes,dims,heads,concat, weightSharing,attnDropout,activation=activation,useIdMap=useIdMap,useResLin=useResLin,normalization=normalization).to(device)
#print(model)
# for name,param in model.named_parameters():
# print('--',name,'--')
# print(param.data.shape)
if optim=='SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=wghtDecay)
if optim=='Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wghtDecay)
criterion = torch.nn.CrossEntropyLoss()
if lrDecayFactor<1:
lrScheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=lrDecayFactor, patience=lrDecayPatience) #based on valAcc
trainLoss = torch.zeros(numEpochs, dtype=torch.float32, device = device)
valLoss = torch.zeros(numEpochs, dtype=torch.float32, device = device)
trainAcc = torch.zeros(numEpochs, dtype=torch.float32, device = device)
valAcc = torch.zeros(numEpochs, dtype=torch.float32, device = device)
testAcc = torch.zeros(numEpochs, dtype=torch.float32, device = device)
trainAUROC = torch.zeros(numEpochs, dtype=torch.float32, device = device)
valAUROC = torch.zeros(numEpochs, dtype=torch.float32, device = device)
testAUROC = torch.zeros(numEpochs, dtype=torch.float32, device = device)
# #extra records of parameters for studying training dynamics
if saveParamGradStatSumry:
paramStatSumry = [{} for i in range(numLayers)]
for i in range(numLayers):
for f in paramTypes:
paramStatSumry[i][f] = {x2:{x:torch.zeros(numEpochs,device=device) for x in labels} for x2 in ['wght','grad']}
if saveNeuronLevelL2Norms:
featL2Norms = [{} for i in range(numLayers)]
attnWghtsSq = [torch.zeros((numEpochs,dims[i+1]),device=device) for i in range(numLayers)]
for i in range(numLayers):
for f in set(paramTypes)-set(['attn']): #incoming: row-wise of W matrix, and outgoing is col-wise of W matrix
featL2Norms[i][f] = {'row':torch.zeros((numEpochs,dims[i+1]),device=device),'col':torch.zeros((numEpochs,dims[i]),device=device)}
if saveLayerWiseForbNorms:
forbNorms = [{f:{x:torch.zeros(numEpochs, device=device) for x in ['wght','grad']}
for f in paramTypes} for i in range(numLayers)]
dirEn = {k: torch.zeros(numEpochs,numLayers+1) for k in list(masks.keys())+['All']}
madGl = {k: torch.zeros(numEpochs,numLayers+1) for k in list(masks.keys())+['All']}
madNb = {k: torch.zeros(numEpochs,numLayers+1) for k in list(masks.keys())+['All']}
dirEnClassWise = torch.zeros(numEpochs,numLayers+1,len(classes),len(classes))
madGlClassWise = torch.zeros(numEpochs,numLayers+1,len(classes),len(classes))
madNbClassWise = torch.zeros(numEpochs,numLayers+1,len(classes),len(classes))
# #changeInParamStatSumry = [{} for i in range(numLayers)]
# #prevRec = [{f:{'wght':None} for f in paramTypes} for i in range(numLayers)]
# #currRec = [{f:{'wght':None,'grad':None} for f in paramTypes} for i in range(numLayers)]
# #alphaStatSumry = [{x2:{x:np.zeros(numEpochs) for x in labels} for x2 in ['alpha_ii','alpha_ij']} for i in range(numLayers)]
# for i in range(numLayers):
# for f in paramTypes:
# #changeInParamStatSumry[i][f] = {'wght':{x:np.zeros(numEpochs) for x in labels}}
#
#map default param names to custom names to match visualization scripts later
modelParamNameMapping = {'att':'attn','lin_l':'feat','lin_r':'feat2', 'weight':'feat'}
params = [{} for i in range(numLayers)]
for name,param in model.named_parameters():
paramNameTokens = name.split('.')
if paramNameTokens[2] in ['att','lin_l','lin_r']:
params[int(paramNameTokens[1])][modelParamNameMapping[paramNameTokens[2]]] = param
if paramNameTokens[2] == 'weight':
params[int(paramNameTokens[1])][modelParamNameMapping[paramNameTokens[2]]] = param
params = initializeParams(params,initScheme,activation)
params = scaleParams(params,scalScheme,scalHPstr)
paramsAtMaxValAcc = None
#initialParamsCopy = deepCopyParamsToNumpy(params)
initialParamsCopy=None
finalParamsCopy = None
maxValAcc = 0
continueTraining = True
epoch=0
while(epoch<numEpochs and continueTraining):
#record required quantities of weights used in a layer
if saveParamGradStatSumry:
for l in range(numLayers):
for p in paramTypes:
for k,v in computeStatSumry(params[l][p].data.detach(),quantiles).items():
paramStatSumry[l][p]['wght'][k][epoch] = v
if saveNeuronLevelL2Norms:
for l in range(numLayers):
for p in paramTypes:
wghts=params[l][p].data.detach()
if p=='attn':
attnWghtsSq[l][epoch] = torch.pow(wghts,2)
else:
featL2Norms[l][p]['row'][epoch] = torch.pow(wghts,2).sum(axis=1)
featL2Norms[l][p]['col'][epoch] = torch.pow(wghts,2).sum(axis=0)
if saveLayerWiseForbNorms:
for l in range(numLayers):
for p in paramTypes:
forbNorms[l][p]['wght'][epoch] = torch.sqrt(torch.pow(params[l][p].data.detach(),2).sum())
model.train()
optimizer.zero_grad()
out,attnCoef,smoothnessMetrics = model(data.x, data.edge_index,getAttnCoef=recordAlphas,
getMetric=[saveNodeSmoothnessVals,saveNodeSmoothnessVals],
adj=[symLap,adj],masks=masks,classMasks=classMasks)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
trainLoss[epoch] = loss.detach()
pred = out.argmax(dim=1)
train_correct = pred[data.train_mask] == data.y[data.train_mask]
trainAcc[epoch] = int(train_correct.sum()) / int(data.train_mask.sum())
loss.backward()
if output_dim==2:
trainAUROC[epoch] = auroc(pred[data.train_mask], data.y[data.train_mask]).item()
optimizer.step()
if saveNodeSmoothnessVals:
for k in ['All']+list(masks.keys()):
dirEn[k][epoch]=torch.FloatTensor(smoothnessMetrics['dirEn'][k])
madGl[k][epoch]=torch.FloatTensor(smoothnessMetrics['madGl'][k])
madNb[k][epoch]=torch.FloatTensor(smoothnessMetrics['madNb'][k])
dirEnClassWise[epoch]=smoothnessMetrics['dirEnClassWise']
madGlClassWise[epoch]=smoothnessMetrics['madGlClassWise']
madNbClassWise[epoch]=smoothnessMetrics['madNbClassWise']
#record quantities again for the gradients in the epoch
if saveParamGradStatSumry:
for l in range(numLayers):
for p in paramTypes:
for k,v in computeStatSumry(params[l][p].grad.detach(),quantiles).items():
paramStatSumry[l][p]['grad'][k][epoch] = v
if saveLayerWiseForbNorms:
for l in range(numLayers):
for p in set(paramTypes):
forbNorms[l][p]['grad'][epoch] = torch.sqrt(torch.pow(params[l][p].grad.detach(),2).sum())
model.eval()
with torch.no_grad():
out,a,smoothnessMetrics = model(data.x, data.edge_index,getAttnCoef=False)
valLoss[epoch] = criterion(out[data.val_mask], data.y[data.val_mask]).detach()
pred = out.argmax(dim=1)
val_correct = pred[data.val_mask] == data.y[data.val_mask]
if output_dim==2:
valAUROC[epoch] = auroc(pred[data.val_mask], data.y[data.val_mask]).item()
valAcc[epoch] = int(val_correct.sum()) / int(data.val_mask.sum())
test_correct = pred[data.test_mask] == data.y[data.test_mask]
testAcc[epoch] = int(test_correct.sum()) / int(data.test_mask.sum())
if output_dim==2:
testAUROC[epoch] = auroc(pred[data.test_mask], data.y[data.test_mask]).item()
if saveWeightsAtMaxValAcc and valAcc[epoch]>maxValAcc:
paramsAtMaxValAcc = deepCopyParamsToNumpy(params)
maxValAcc = valAcc[epoch]
if(trainLoss[epoch]<trainLossToConverge):
continueTraining=False
if lrDecayFactor<1:
lrScheduler.step(valAcc[epoch])
if(epoch%printLossEveryXEpoch==0 or epoch==numEpochs-1):
print(f'--Epoch: {epoch:03d}, Train Loss: {loss:.4f}')
# print(dirEn[epoch])
# print(madGl[epoch])
# print(madNb[epoch])
epoch+=1
#finalParamsCopy = deepCopyParamsToNumpy(params)
trainLoss = trainLoss[:epoch].detach().cpu().numpy()
valLoss = valLoss[:epoch].detach().cpu().numpy()
trainAcc = trainAcc[:epoch].detach().cpu().numpy()
valAcc = valAcc[:epoch].detach().cpu().numpy()
testAcc = testAcc[:epoch].detach().cpu().numpy()
trainAUROC = trainAUROC[:epoch].detach().cpu().numpy()
valAUROC = valAUROC[:epoch].detach().cpu().numpy()
testAUROC = testAUROC[:epoch].detach().cpu().numpy()
if saveNodeSmoothnessVals:
for k in masks.keys():
dirEn[k] = dirEn[k][:epoch].detach().cpu().numpy()
madGl[k] = madGl[k][:epoch].detach().cpu().numpy()
madNb[k] = madNb[k][:epoch].detach().cpu().numpy()
dirEnClassWise = dirEnClassWise[:epoch].detach().cpu().numpy()
madGlClassWise = madGlClassWise[:epoch].detach().cpu().numpy()
madNbClassWise = madNbClassWise[:epoch].detach().cpu().numpy()
#print('Max or Convergence Epoch: ', epoch)
print('Max Validation Acc At Epoch: ', np.argmax(valAcc)+1)
print('Test Acc at Max Val Acc:', testAcc[np.argmax(valAcc)]*100)
if output_dim==2:
print('Max Validation AUROC At Epoch: ', np.argmax(valAUROC)+1)
print('Test AUROC at Max Val AUROC:', testAUROC[np.argmax(valAUROC)]*100)
if saveNodeSmoothnessVals:
for k in masks.keys():
print('Dir Energy at Max Val Acc ('+k+'):', dirEn[k][np.argmax(valAcc)])
print('MAD Global at Max Val Acc ('+k+'):', madGl[k][np.argmax(valAcc)])
print('MAD Neighbors at Max Val Acc ('+k+'):', madNb[k][np.argmax(valAcc)])
if saveParamGradStatSumry:
for l in range(numLayers):
for p in paramTypes:
for x in labels:
paramStatSumry[l][p]['wght'][x] = paramStatSumry[l][p]['wght'][x][:epoch].cpu().numpy()
paramStatSumry[l][p]['grad'][x] = paramStatSumry[l][p]['grad'][x][:epoch].cpu().numpy()
if saveNeuronLevelL2Norms:
for l in range(numLayers):
attnWghtsSq[l] = attnWghtsSq[l][0:epoch,:].T.cpu().numpy()
for p in set(paramTypes)-set(['attn']):
featL2Norms[l][p]['row'] = featL2Norms[l][p]['row'][0:epoch,:].T.cpu().numpy()
featL2Norms[l][p]['col'] = featL2Norms[l][p]['col'][0:epoch,:].T.cpu().numpy()
if saveLayerWiseForbNorms:
for l in range(numLayers):
for p in paramTypes:
forbNorms[l][p]['wght'] = forbNorms[l][p]['wght'][:epoch].cpu().numpy()
forbNorms[l][p]['grad'] = forbNorms[l][p]['grad'][:epoch].cpu().numpy()
expDict = {'expID':expID,
'trainedEpochs':epoch,
'trainLoss':trainLoss,
'valLoss':valLoss,
'trainAcc':trainAcc,
'valAcc':valAcc,
'testAcc':testAcc,
'trainAUROC':trainAUROC,
'valAUROC':valAUROC,
'testAUROC':testAUROC,
'initialParams':initialParamsCopy,
'finalParams':finalParamsCopy,
'paramsAtMaxValAcc':paramsAtMaxValAcc
}
with open(path+'dictExp'+str(expID)+'_run'+str(run)+'.pkl', 'wb') as f:
pickle.dump(expDict,f)
if saveParamGradStatSumry:
saveParamStatSumry = {'expID':expID,
'numLayers':numLayers,
'trainedEpochs':epoch,
'quantiles':quantiles.cpu().numpy(),
'statSumry':paramStatSumry
}
with open(path+'paramStatSumryExp'+str(expID)+'_run'+str(run)+'.pkl', 'wb') as f:
pickle.dump(saveParamStatSumry,f)
if saveNeuronLevelL2Norms:
saveNeuronLevelAttnAndFeatL2Norms = {
'expID':expID,
'numLayers':numLayers,
'trainedEpochs':epoch,
'featL2Norms':featL2Norms,
'attnWghtsSq':attnWghtsSq
}
with open(path+'neuronLevelAttnAndFeatL2Norms'+str(expID)+'_run'+str(run)+'.pkl', 'wb') as f:
pickle.dump(saveNeuronLevelAttnAndFeatL2Norms,f)
if saveLayerWiseForbNorms:
saveForbNorms = {'expID':expID,
'numLayers':numLayers,
'trainedEpochs':epoch,
'forbNorms':forbNorms
}
with open(path+'forbNormsExp'+str(expID)+'_run'+str(run)+'.pkl', 'wb') as f:
pickle.dump(saveForbNorms,f)
if saveNodeSmoothnessVals:
saveNodeSmoothnessMetrics = {'expID':expID,
'numLayers':numLayers,
'trainedEpochs':epoch,
'dirEnergy':dirEn,
'madGlobal':madGl,
'madNeighbors':madNb,
'dirEnClassWise':dirEnClassWise,
'madGlClassWise':madGlClassWise,
'madNbClassWise':madNbClassWise
}
with open(path+'nodeSmoothnessMetricsExp'+str(expID)+'_run'+str(run)+'.pkl', 'wb') as f:
pickle.dump(saveNodeSmoothnessMetrics,f)