-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9).Play_Sounds.py
282 lines (222 loc) · 9.78 KB
/
9).Play_Sounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import cv2
import numpy as np
import dlib
from math import hypot
# importing winsound library
import winsound
# we used the detector to detect the frontal face
detector = dlib.get_frontal_face_detector()
# it will dectect the facial landwark points
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
font = cv2.FONT_HERSHEY_PLAIN
# Keyboard setting
keyboard = np.zeros((600,1000,3),np.uint8)
# dictionary containing the letters, each one associated with an index.
keys_set_1 = {0: "Q", 1: "W", 2: "E", 3: "R", 4: "T",
5: "A", 6: "S", 7: "D", 8: "F", 9: "G",
10: "Z", 11: "X", 12: "C", 13: "V", 14: "B"}
def letter(letter_index, text, letter_light):
# Keys
# Each key is simply a rectangle containing some text. So we define the sizes and we draw the rectangle.
if letter_index == 0:
x = 0
y = 0
elif letter_index == 1:
x = 200
y = 0
elif letter_index == 2:
x = 400
y = 0
elif letter_index == 3:
x = 600
y = 0
elif letter_index == 4:
x = 800
y = 0
elif letter_index == 5:
x = 0
y = 200
elif letter_index == 6:
x = 200
y = 200
elif letter_index == 7:
x = 400
y = 200
elif letter_index == 8:
x = 600
y = 200
elif letter_index == 9:
x = 800
y = 200
elif letter_index == 10:
x = 0
y = 400
elif letter_index == 11:
x = 200
y = 400
elif letter_index == 12:
x = 400
y = 400
elif letter_index == 13:
x = 600
y = 400
elif letter_index == 14:
x = 800
y = 400
width = 200
height = 200
th = 3 # thickness
if letter_light == True:
cv2.rectangle(keyboard, (x + th, y + th), (x + width - th, y + height - th), (255, 255, 255), -1)
else:
cv2.rectangle(keyboard, (x + th, y + th), (x + width - th, y + height - th), (255, 0, 0), th)
# Inside the rectangle now we put the letter. So we define the sizes and style of the text and we center it.
# Text settings
font_letter = cv2.FONT_HERSHEY_PLAIN
font_scale = 10
font_th = 4
text_size = cv2.getTextSize(text, font_letter, font_scale, font_th)[0]
width_text, height_text = text_size[0], text_size[1]
text_x = int((width - width_text) / 2) + x
text_y = int((height + height_text) / 2) + y
cv2.putText(keyboard, text, (text_x, text_y), font_letter, font_scale, (255, 0, 0), font_th)
# We create a function that we will need later on to detect the medium point.
# On this function we simply put the coordinates of two points and will return the medium point
# (the points in the middle between the two points).
def midpoint(p1 ,p2):
return int((p1.x + p2.x)/2), int((p1.y + p2.y)/2)
def get_blinking_ratio(eye_points, facial_landmarks):
# to detect the left_side of a left eye
left_point = (facial_landmarks.part(eye_points[0]).x, facial_landmarks.part(eye_points[0]).y)
# to detect the right_side of the left eye
right_point = (facial_landmarks.part(eye_points[3]).x, facial_landmarks.part(eye_points[3]).y)
# to detect the mid point for the center of top in left eye
center_top = midpoint(facial_landmarks.part(eye_points[1]), facial_landmarks.part(eye_points[2]))
# to detect the mid point for the center of the bottom in left eye
center_bottom = midpoint(facial_landmarks.part(eye_points[5]), facial_landmarks.part(eye_points[4]))
# to calculate horizontal line distance
hor_line_lenght = hypot((left_point[0] - right_point[0]), (left_point[1] - right_point[1]))
# to calculate vertical line distance
ver_line_lenght = hypot((center_top[0] - center_bottom[0]), (center_top[1] - center_bottom[1]))
# to calculate ratio
ratio = hor_line_lenght / ver_line_lenght
return ratio
def get_gaze_ratio(eye_points, facial_landmarks):
# Gaze detection
# getting the area from the frame of the left eye only
left_eye_region = np.array([(facial_landmarks.part(eye_points[0]).x, facial_landmarks.part(eye_points[0]).y),
(facial_landmarks.part(eye_points[1]).x, facial_landmarks.part(eye_points[1]).y),
(facial_landmarks.part(eye_points[2]).x, facial_landmarks.part(eye_points[2]).y),
(facial_landmarks.part(eye_points[3]).x, facial_landmarks.part(eye_points[3]).y),
(facial_landmarks.part(eye_points[4]).x, facial_landmarks.part(eye_points[4]).y),
(facial_landmarks.part(eye_points[5]).x, facial_landmarks.part(eye_points[5]).y)],
np.int32)
# cv2.polylines(frame, [left_eye_region], True, 255, 2)
height, width, _ = frame.shape
# create the mask to extract xactly the inside of the left eye and exclude all the sorroundings.
mask = np.zeros((height, width), np.uint8)
cv2.polylines(mask, [left_eye_region], True, 255, 2)
cv2.fillPoly(mask, [left_eye_region], 255)
eye = cv2.bitwise_and(gray, gray, mask=mask)
# We now extract the eye from the face and we put it on his own window.Onlyt we need to keep in mind that wecan only cut
# out rectangular shapes from the image, so we take all the extremes points of the eyes to get the rectangle
min_x = np.min(left_eye_region[:, 0])
max_x = np.max(left_eye_region[:, 0])
min_y = np.min(left_eye_region[:, 1])
max_y = np.max(left_eye_region[:, 1])
gray_eye = eye[min_y: max_y, min_x: max_x]
# threshold to seperate iris and pupil from the white part of the eye.
_, threshold_eye = cv2.threshold(gray_eye, 70, 255, cv2.THRESH_BINARY)
# dividing the eye into 2 parts .left_side and right_side.
height, width = threshold_eye.shape
left_side_threshold = threshold_eye[0: height, 0: int(width / 2)]
left_side_white = cv2.countNonZero(left_side_threshold)
right_side_threshold = threshold_eye[0: height, int(width / 2): width]
right_side_white = cv2.countNonZero(right_side_threshold)
if left_side_white == 0:
gaze_ratio = 1
elif right_side_white == 0:
gaze_ratio = 5
else:
gaze_ratio = left_side_white / right_side_white
return (gaze_ratio)
# to open webcab to capture the image
cap = cv2.VideoCapture(0)
# Going to create a white image which is going to be the board where we will put the letters we click from the virtual keyboard.
board = np.zeros((500, 500,), np.uint8)
board[:] = 255
# Counters
# To count the number of the frames
frames = 0
# The blinking_frames variable will keep track of the frames in a row in which the eyes are blinking.
blinking_frames = 0
letter_index = 0
keyboard_selected = "left"
last_keyboard_selected = "left"
# Text is going to contain all the letter that we will press when we blink our eyes.
text = ""
while True:
_, frame = cap.read()
frames = frames + 1
frame = cv2.resize(frame, None, fx=0.5, fy=0.5)
keyboard[:] = (0, 0, 0)
# showing direction
new_frame = np.zeros((500, 500, 3), np.uint8)
# change the color of the frame captured by webcam to grey
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
active_letter = keys_set_1[letter_index]
# to detect faces from grey color frame
faces = detector(gray)
for face in faces:
# to detect the landmarks of a face
landmarks = predictor(gray, face)
left_eye_ratio = get_blinking_ratio([36, 37, 38, 39, 40, 41], landmarks)
right_eye_ratio = get_blinking_ratio([42, 43, 44, 45, 46, 47], landmarks)
blinking_ratio = (left_eye_ratio + right_eye_ratio) / 2
if blinking_ratio > 5.7:
cv2.putText(frame, "BLINKING", (50, 150), font, 4, (255, 0, 0), thickness=3)
blinking_frames = blinking_frames + 1
frames = frames - 1
if blinking_frames == 5:
text = text + active_letter
winsound.PlaySound("sound.wav", winsound.SND_ALIAS)
else:
blinking_frames = 0
gaze_ratio_left_eye = get_gaze_ratio([36, 37, 38, 39, 40, 41], landmarks)
gaze_ratio_right_eye = get_gaze_ratio([42, 43, 44, 45, 46, 47], landmarks)
gaze_ratio = (gaze_ratio_right_eye + gaze_ratio_left_eye) / 2
if gaze_ratio <= 0.9:
keyboard_selected = "right"
if last_keyboard_selected != keyboard_selected:
winsound.PlaySound("right.wav", winsound.SND_ALIAS)
last_keyboard_selected = keyboard_selected
else:
keyboard_selected = "left"
if last_keyboard_selected != keyboard_selected:
winsound.PlaySound("left.wav", winsound.SND_ALIAS)
last_keyboard_selected = keyboard_selected
# letters
# Then just after the blinking detection we add +1 to the blinking frames and when the blinking is detected for 5 frames in a
# row then we add the selected letter to the text.
if frames == 15:
letter_index = letter_index + 1
frames = 0
if letter_index == 15:
letter_index = 0
for i in range(15):
if i == letter_index:
light = True
else:
light = False
letter(i, keys_set_1[i], light)
# Finally we display the text on the board.
cv2.putText(board, text, (10, 100), font, 4, 0, 3)
cv2.imshow("Frame", frame)
cv2.imshow("Keyboard", keyboard)
cv2.imshow("Board", board)
key = cv2.waitKey(1)
# close the webcam when escape key is pressed
if key == 27:
break
cap.release()
cv2.destroyAllWindows()