-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutilities.py
408 lines (352 loc) · 15.5 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
'''
MIT License
Copyright (c) 2022, Renaissance Computing Institute
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''
import sys
import numpy as np
import pandas as pd
import re
import xarray as xr
from scipy import spatial as sp
from datetime import date, datetime
import time as tm
#print("utilities:Xarray Version = {}".format(xr.__version__))
Kmax=10
got_kdtree=None
TOL=10e-5
debug=False
# Specify available reanalysis years
Ymin=1979
Ymax=2022
YEARS=[item for item in range(Ymin, Ymax+1)]
#print(f'utilities:Ymin, Ymax = {Ymin,Ymax}')
fileext='.d0.no-unlim.T.rc.nc'
#fileext='.d4.no-unlim.T.rc.nc';
#print(f'utilities:fileext = {fileext}')
# Default standard location is on the primary RENCI TDS
#urldirformat="http://tds.renci.org/thredds/dodsC/Reanalysis/ADCIRC/ERA5/hsofs/%d-post"
urldirformat="https://tdsres.apps.renci.org/thredds/dodsC/ReanalysisV2/ADCIRC/ERA5/hsofs.V3/%d-post"
#urldirformat="http://tds.renci.org/thredds/dodsC/Reanalysis/ADCIRC/ERA5/ec95d/%d"
def get_adcirc_grid_from_ds(ds):
"""
"""
agdict = {}
agdict['lon'] = ds['x'][:]
agdict['lat'] = ds['y'][:]
agdict['ele'] = ds['element'][:,:] - 1
agdict['depth'] = ds['depth'][:]
agdict['latmin'] = np.mean(ds['y'][:]) # needed for scaling lon/lat plots
return agdict
def attach_element_areas(agdict):
"""
"""
x=agdict['lon'].values
y=agdict['lat'].values
e=agdict['ele'].values
# COMPUTE GLOBAL DX,DY, Len, angles
i1=e[:,0]
i2=e[:,1]
i3=e[:,2]
x1=x[i1];x2=x[i2];x3=x[i3];
y1=y[i1];y2=y[i2];y3=y[i3];
# coordinate deltas
dx23=x2-x3
dx31=x3-x1
dx12=x1-x2
dy23=y2-y3
dy31=y3-y1
dy12=y1-y2
# lengths of sides
a = np.sqrt(dx12*dx12 + dy12*dy12)
b = np.sqrt(dx31*dx31 + dy31*dy31)
c = np.sqrt(dx23*dx23 + dy23*dy23)
agdict['areas'] = ( x1*dy23 + x2*dy31 + x3*dy12 )/2.
agdict['edge_lengths']=[a, b, c];
agdict['dl']=np.mean(agdict['edge_lengths'],axis=0)
return agdict
def basis2d_withinElement(phi):
"""
"""
interior_status = np.all(phi[:]<=1+TOL,axis=1) & np.all(phi[:]>=0-TOL,axis=1)
return interior_status
def basis2d(agdict,xylist,j):
"""
"""
# check length of j and xylist
# check for needed arrays in agdict
phi=[]
#nodes for the elements in j
n3=agdict['ele'][j]
x=agdict['lon'][n3].values
x1=x[:,0];x2=x[:,1];x3=x[:,2];
y=agdict['lat'][n3].values
y1=y[:,0];y2=y[:,1];y3=y[:,2];
areaj=agdict['areas'][j]
xp=xylist[:,0]
yp=xylist[:,1]
# Basis function 1
a=(x2*y3-x3*y2)
b=(y2-y3)
c=-(x2-x3)
phi0=(a+b*xp+c*yp)/(2.0*areaj)
# Basis function 2
a=(x3*y1-x1*y3)
b=(y3-y1)
c=-(x3-x1)
phi1=(a+b*xp+c*yp)/(2.0*areaj)
# Basis function 3
a=(x1*y2-x2*y1)
b=(y1-y2)
c=-(x1-x2)
phi2=(a+b*xp+c*yp)/(2.0*areaj)
return np.array([phi0, phi1, phi2]).T
def get_adcirc_time_from_ds(ds):
"""
"""
return {'time': ds['time']}
def f63_to_xr(url):
"""
"""
dropvars=['neta', 'nvel', 'max_nvdll', 'max_nvell']
return xr.open_dataset(url,drop_variables=dropvars)
def get_adcirc_slice_from_ds(ds,v,it=0):
"""
"""
advardict = {}
var = ds.variables[v]
if re.search('max', v) or re.search('depth', v):
var_d = var[:] # the actual data
else:
if ds.variables[v].dims[0] == 'node':
#print('ds: transposed data found')
var_d = var[it,:].T # the actual data
elif ds.variables[v].dims[0] == 'time':
var_d = var[:,it] # the actual data
else:
print(f'Unexpected leading variable name {ds.variables[v].dims}: Abort')
sys.exit(1)
#var_d[var_d.mask] = np.nan
advardict['var'] = var_d.data
return advardict
def ComputeTree(agdict):
"""
Given lon,lat,ele in agdict,compute element centroids and
generate the ADCIRC grid KDTree
returns agdict with tree
"""
global got_kdtree # Try not to if already done
t0=tm.time()
try:
x=agdict['lon'].values.ravel() # ravel; not needed
y=agdict['lat'].values.ravel()
e=agdict['ele'].values
except Exception as e:
print('Did not find lon,lat,ele data in agdict.')
sys.exit(1)
xe=np.mean(x[e],axis=1)
ye=np.mean(y[e],axis=1)
if got_kdtree is None: # Still want to build up the data for agdict, we just do not need the tree reevaluated for every year
agdict['tree']=tree = sp.KDTree(np.c_[xe,ye])
got_kdtree=tree
else:
agdict['tree']=got_kdtree
if debug: print(f'Build annual KDTree time is {tm.time()-t0}s')
return agdict
def ComputeQuery(xylist, agdict, kmax=10):
"""
Generate the kmax-set of nearest neighbors to each lon,lat pair in xylist.
Each test point (each lon/lat pair) gets associated distance (dd) and element (j) objects
At this stage it is possible that some test points are not interior to the nearest element. We will
subsequently check that.
dd: num points by neighbors
j: num points by neighbors
"""
t0=tm.time()
agresults=dict()
dd, j = agdict['tree'].query(xylist, k=kmax)
if kmax==1:
dd=dd.reshape(-1,1)
j=j.reshape(-1,1)
agresults['distance']=dd
agresults['elements']=j
agresults['number_neighbors']=kmax
agresults['geopoints']=xylist # We shall use this later
if debug: print(f'KDTree query of size {kmax} took {tm.time()-t0}s')
return agresults
def ComputeBasisRepresentation(xylist, agdict, agresults):
"""
For each test point with kmax number_neighbors, compute linear basis for
each neighbor. Then, check which, if any, element the test point actually resides within.
If none, then the returned basis functions (i.e., interpolation weights) are set to nans.
If an input point is an "exact" grid point (i.e., ADCIRC grid node), then ambiguity
may arise regarding the best element and multiple True statuses can occur. Here we
also keep the nearest element value. We do this by reverse iterating in the zip function
"""
# First build all the basis weights and determine if it was interior or not
t0=tm.time()
kmax = agresults['number_neighbors']
j = agresults['elements']
phival_list=list()
within_interior=list()
for k_value in range(0,kmax):
phival=basis2d(agdict,xylist,j[:,k_value])
phival_list.append(phival)
within_interior.append(basis2d_withinElement(phival))
#detailed_weights_elements(phival_list, j)
# Second only retain the "interior" results or nans if none
final_weights= np.full( (phival_list[0].shape[0],phival_list[0].shape[1]),np.nan)
final_jvals = np.full( j.T[0].shape[0],-99999)
final_status = np.full( within_interior[0].shape[0],False)
# Loop backwards. thus keeping the "nearest" True for each geopoints for each k in kmax
for pvals,jvals,testvals in zip(phival_list[::-1], j.T[::-1], within_interior[::-1]): # THis loops over Kmax values
final_weights[testvals] = pvals[testvals]
final_jvals[testvals]=jvals[testvals]
final_status[testvals] = testvals[testvals]
agresults['final_weights']=final_weights
agresults['final_jvals']=final_jvals
agresults['final_status']=final_status
if debug: print(f'Compute of basis took {tm.time()-t0}s')
# Keep the list if the user needs to know after the fact
outside_elements = np.argwhere(np.isnan(final_weights).all(axis=1)).ravel()
agresults['outside_elements']=outside_elements
return agresults
def detailed_weights_elements(phival_list, j):
"""
This is only used for understanding better the detailed behavior of a particular grid
It is not invoked for general use
"""
for pvals,jvals in zip(phival_list,j.T):
df_pvals = pd.DataFrame(pvals, columns=['Phi0','Phi1','Phi2'])
df_pvals.index = df_pvals.index
df_jvals = pd.DataFrame(jvals+1,columns=['Element+1'])
df = pd.concat([df_pvals,df_jvals],axis=1)
df.index = df.index+1
df.index = df.index.astype(int)
print(df.loc[2].to_frame().T)
def WaterLevelReductions(t, data_list, final_weights):
"""
Each data_list is a df for a single point containing 3 columns, one for
each node in the containing element.
These columns are reduced using the final_weights previously calculated
A final df is returned with index=time and a single column for each of the
input test points (some of which may be partially or completely nan)
"""
final_list = list()
for index,dataseries,weights in zip(range(0,len(data_list)), data_list,final_weights):
reduced_data = np.matmul(dataseries.values, weights.T)
df = pd.DataFrame(reduced_data, index=t, columns=[f'P{index+1}'])
final_list.append(df)
df_final_data = pd.concat(final_list, axis=1)
return df_final_data
def GenerateMetadata(agresults):
"""
Here we want to simply assist the user by reporting back the lon/lat values for each geopoint.
This should be the same as the input dataset. -99999 indicates an element was not found in the grid.
"""
df_lonlat=pd.DataFrame(agresults['geopoints'], columns=['LON','LAT'])
df_elements = pd.DataFrame(agresults['final_jvals']+1, columns=['Element (1-based)'])
df_elements.replace(-99998,-99999,inplace=True)
df_meta=pd.concat( [df_lonlat,df_elements], axis=1)
df_meta['Point']=df_meta.index+1
df_meta.set_index('Point', inplace=True)
df_meta.rename('P{}'.format, inplace=True)
return df_meta
def ConstructReducedWaterLevelData_from_ds(ds, agdict, agresults, variable_name=None):
"""
This method acquires ADCIRC water levels for the list of geopoints/elements.
For each specified point in the grid, the resulting time series' are reduced to a single time series using
a (basis2d) weighted sum. For a non-nan value to result in the final data, the product data must:
1) Be non-nan for each time series at the specified time tick
2) The test point must be interior to the specified element
"""
if variable_name is None:
print('User MUST supply the correct variable name')
sys.exit(1)
if debug: print(f'Variable name is {variable_name}')
t0 = tm.time()
data_list=list()
final_weights = agresults['final_weights']
final_jvals = agresults['final_jvals']
acdict=get_adcirc_time_from_ds(ds)
t=acdict['time'].values
e = agdict['ele'].values
for vstation in final_jvals:
advardict = get_adcirc_slice_from_ds(ds,variable_name,it=e[vstation])
df = pd.DataFrame(advardict['var'])
data_list.append(df)
if debug: print(f'Time to fetch annual all test station (triplets) was {tm.time()-t0}s')
df_final=WaterLevelReductions(t, data_list, final_weights)
t0=tm.time()
df_meta=GenerateMetadata(agresults) # This is here mostly for future considerations
if debug: print(f'Time to reduce annual {len(final_jvals)} test stations is {tm.time()-t0}s')
agresults['final_reduced_data']=df_final
agresults['final_meta_data']=df_meta
return agresults
def return_sorted_years(year_tuple):
"""
Range of years (inclusive) to test: (start_year,end_year)
Sort and ensure existence
"""
start_year=year_tuple[0] if year_tuple[0] in YEARS else None
end_year=year_tuple[1] if year_tuple[1] in YEARS else None
if all(year_tuple):
year_tuple=tuple(sorted((start_year,end_year)))
else:
print(f'One or more specified years are out of range: {year_tuple}')
print(f'Available years = {YEARS}')
sys.exit(1)
print(f'Year range: {year_tuple}')
return year_tuple[0],year_tuple[1]
def Combined_multiyear_pipeline(year_tuple=None, filename=None, geopoints=None, variable_name=None, nearest_neighbors=10, alt_urlsource=None):
"""
User must provide the proper filename (eg fort.63.nc) from which to access the data
must provide the associated variable_name for the data product
May provide an alternative storage location, with caveats, else the TDS server is used.
"""
urlfetchdir=urldirformat if alt_urlsource is None else alt_urlsource
list_data=list()
list_meta=list()
start_year,end_year=return_sorted_years(year_tuple)
if debug: print(f'Final sorted input years {year_tuple}')
print(f'ADCIRC data url = {urlfetchdir}')
for year in range(start_year,end_year+1):
print(year)
url=f'{urlfetchdir % year}/{filename}'
if debug: print(url)
df_data, df_metadata, df_excluded=Combined_pipeline(url, variable_name, geopoints, nearest_neighbors=nearest_neighbors)
#list_data.append(df_data.loc[str(year)]) # Remove any flanks that may exist
try:
list_data.append(df_data.loc[f'{year}':f'{year+1}-01-01 00:00:00']) # Try to also include the first hour of the next year
except Exception as e:
print(f'Failed trying to apply bounds {e}')
sys.exit(1)
list_meta.append(df_metadata)
df_final_data=pd.concat(list_data,axis=0)
df_final_metadata=pd.concat(list_meta,axis=0)
return df_final_data, df_final_metadata, df_excluded # Just grab last df_excluded since they are al the same (or should be)
# NOTE We do not need to rebuild the tree for each year since the grid is unchanged.
def Combined_pipeline(url, variable_name, geopoints, nearest_neighbors=10):
"""
Interpolate for one year.
df_excluded_geopoints lists only those stations excluded by element tests.
Some could be all nans due to dry points
No flanks removed in this method as the caller may want to see everything
"""
ds = f63_to_xr(url)
agdict=get_adcirc_grid_from_ds(ds)
agdict=attach_element_areas(agdict)
if debug: print('Start annual KDTree pipeline')
agdict=ComputeTree(agdict)
agresults=ComputeQuery(geopoints, agdict, kmax=nearest_neighbors)
agresults=ComputeBasisRepresentation(geopoints, agdict, agresults)
agresults=ConstructReducedWaterLevelData_from_ds(ds, agdict, agresults, variable_name=variable_name)
if debug: print(f'Basis function Tolerance value is {TOL}')
if debug: print(f'List of {len(agresults["outside_elements"])} stations not assigned to any grid element follows for kmax {nearest_neighbors}')
df_product_data=agresults['final_reduced_data']
df_product_metadata=agresults['final_meta_data']
df_excluded_geopoints=pd.DataFrame(geopoints[agresults['outside_elements']], index=agresults['outside_elements']+1, columns=['lon','lat'])
if debug: print('Finished annual Combined_pipeline')
return df_product_data, df_product_metadata, df_excluded_geopoints