-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.v
1110 lines (966 loc) · 29.4 KB
/
Utils.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import ZArith. (* omega *)
Require Import List.
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype seq.
(** * Useful tactics *)
Ltac inv H := inversion H; clear H; subst.
Ltac gdep x := generalize dependent x.
(* inv by name of the Inductive relation *)
Ltac invh f :=
match goal with
[ id: f |- _ ] => inv id
| [ id: f _ |- _ ] => inv id
| [ id: f _ _ |- _ ] => inv id
| [ id: f _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ _ _ _ _ _ |- _ ] => inv id
| [ id: f _ _ _ _ _ _ _ _ _ _ _ _ _ _ |- _ ] => inv id
end.
Require Coq.Strings.String. Open Scope string_scope.
Ltac move_to_top x :=
match reverse goal with
| H : _ |- _ => try move x after H
end.
Tactic Notation "assert_eq" ident(x) constr(v) :=
let H := fresh in
assert (x = v) as H by reflexivity;
clear H.
Tactic Notation "Case_aux" ident(x) constr(name) :=
first [
set (x := name); move_to_top x
| assert_eq x name; move_to_top x
| fail 1 "because we are working on a different case" ].
Tactic Notation "Case" constr(name) := Case_aux Case name.
Tactic Notation "SCase" constr(name) := Case_aux SCase name.
Tactic Notation "SSCase" constr(name) := Case_aux SSCase name.
Tactic Notation "SSSCase" constr(name) := Case_aux SSSCase name.
Tactic Notation "SSSSCase" constr(name) := Case_aux SSSSCase name.
Tactic Notation "SSSSSCase" constr(name) := Case_aux SSSSSCase name.
Tactic Notation "SSSSSSCase" constr(name) := Case_aux SSSSSSCase name.
Tactic Notation "SSSSSSSCase" constr(name) := Case_aux SSSSSSSCase name.
(* ---------------------------------------------------------------- *)
(* Tactics for replacing definitional equality with provable equality *)
Module EqualityTactics.
(* NC: Using a module here to show where these equality related defs
start and end. It appears that [Ltac] defs don't escape from sections
... *)
Lemma modusponens: forall (P Q: Prop), P -> (P -> Q) -> Q.
Proof.
auto. Qed.
(* Existentially instantiate a hypothesis. *)
Ltac exploit x :=
refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _ _) _)
|| refine (modusponens _ _ (x _ _ _) _)
|| refine (modusponens _ _ (x _ _) _)
|| refine (modusponens _ _ (x _) _).
Ltac try_exploit l :=
try (exploit l;
try solve [eauto];
let H := fresh "H" in intros H;
repeat match goal with
| [H : (exists _, _) |- _ ] => destruct H
| [H : _ /\ _ |- _ ] => destruct H
end;
subst).
(* NC: need to change the order of the premises, versus [modusponens],
so I can get at the implication [P -> Q] first; the proof of [P] may
generate arbitrarily many subgoals. *)
Lemma cut': forall (P Q: Prop), (P -> Q) -> P -> Q.
Proof. auto. Qed.
(* Like [exploit], but using [cut']. *)
Ltac ecut' x :=
refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _ _))
|| refine (cut' _ _ _ (x _ _ _))
|| refine (cut' _ _ _ (x _ _))
|| refine (cut' _ _ _ (x _))
|| refine (cut' _ _ _ (x)).
(* Like [exact H], but allow indexes to be definitionally different if
they are provably equal.
For example, a goal
H : T a1 ... an
---------------
T b1 ... bn
is reduced to proving
a1 = b1, ..., an = bn
by [exact_f_equal H].
*)
Ltac exact_f_equal h :=
let h_eq := fresh "h_eq" in
let t := type of h in
match goal with
| [ |- ?g ] =>
cut (g = t); [ intro h_eq; rewrite h_eq; exact h | f_equal; auto ]
end.
(* A generalization of [exact_f_equal] to implications.
This is like [applys_eq] from LibTactics.v, except you do not need
to specify which vars you want equalities for. See Software
Foundations for a description of [applys_eq]:
http://www.cis.upenn.edu/~bcpierce/sf/UseTactics.html#lab869
*)
Ltac apply_f_equal h :=
let h_specialized := fresh "h_specialized" in
let t := intro h_specialized; exact_f_equal h_specialized in
(ecut' h; [t|..]).
(* Solve sub goals with [tac], using [f_equal] to make progress when
possible
*)
Ltac rec_f_equal tac :=
tac || (progress f_equal; rec_f_equal tac).
Section Test.
Open Scope nat.
Lemma test_apply_f_equal:
forall (n1 n2: nat) (P: nat -> list (list nat) -> nat -> Prop),
(forall a, 0 = a -> a = 0 ->
P a (((n1+1)::nil)::nil) (n1+n2)) ->
forall b, P (b - b) (((1+n1)::nil)::nil) (n2+n1).
Proof.
move => ? ? ? HP ? //=.
apply_f_equal HP;
first (do 2 f_equal);
try solve [apply addnC];
rewrite subnn; auto.
Qed.
Lemma test_exact_f_equal: forall (n1 n2: nat) (P: nat -> nat -> Prop),
P (n1+1) (n1+n2) -> P (1+n1) (n2+n1).
Proof.
intros ? ? ? HP. exact_f_equal HP;
try solve [apply addnC];
rewrite subnn; auto.
Qed.
Lemma test_rec_f_equal:
forall (n1 n2: nat) (P: list (list nat) -> nat -> Prop),
P (((n1+1)::nil)::nil) (n1+n2) -> P (((1+n1)::nil)::nil) (n2+n1).
Proof.
intros ? ? ? HP. exact_f_equal HP;
first (do 2 f_equal);
try solve [apply addnC];
rewrite subnn; auto.
Qed.
End Test.
End EqualityTactics.
Export EqualityTactics.
(* Borrowed from CPDT *)
(* Instantiate a quantifier in a hypothesis [H] with value [v], or,
if [v] doesn't have the right type, with a new unification variable.
Also prove the lefthand sides of any implications that this exposes,
simplifying [H] to leave out those implications. *)
Ltac guess v H :=
repeat match type of H with
| forall x : ?T, _ =>
match type of T with
| Prop =>
(let H' := fresh "H'" in
assert (H' : T); [
solve [ eauto 6 ]
| specialize (H H'); clear H' ])
|| fail 1
| _ =>
specialize (H v)
|| let x := fresh "x" in
evar (x : T);
let x' := eval unfold x in x in
clear x; specialize (H x')
end
end.
Ltac eq_H_intros :=
repeat
(match goal with
| [ |- _ = _ -> _ ] =>
intros ?Heq
end).
Ltac eq_H_getrid :=
repeat
(match goal with
| [ |- _ = _ -> _ ] =>
intros _
end).
Ltac decEq :=
match goal with
| [ |- _ = _ ] => f_equal
| [ |- (?X ?A <> ?X ?B) ] =>
cut (A <> B); [intro; congruence | try discriminate]
end.
Ltac allinv :=
repeat
match goal with
| [ H: Some _ = Some _ |- _ ] => inv H
| [ H: Some _ = None |- _ ] => inv H
| [ H: None = Some _ |- _ ] => inv H
| _ => idtac
end.
Ltac allinv' :=
allinv ;
(match goal with
| [ H1: ?f _ _ = _ ,
H2: ?f _ _ = _ |- _ ] => rewrite H1 in H2 ; inv H2
end).
(* NC: Ltac is not exported from [Section]. This is for simplifying
the existential in [predicted_outcome]. *)
Ltac simpl_exists_tag :=
match goal with
| [ H: exists _, ?x = (_,_) |- _ ] => destruct H; subst x; simpl
end.
(* Monad notation *)
Definition bind (A B:Type) (f:A->option B) (a:option A) : option B :=
match a with
| None => None
| Some a => f a
end.
Module DoNotation.
Notation "'do' X <- A ; B" :=
(bind _ _ (fun X => B) A)
(at level 200, X ident, A at level 100, B at level 200).
Notation "'do' X : T <- A ; B" :=
(bind _ _ (fun X : T => B) A)
(at level 200, X ident, A at level 100, B at level 200).
End DoNotation.
(* Useful functions on lists *)
Set Implicit Arguments.
(* What I wanted to write for group_by (taken from ghc stdlib)
Fixpoint span A (p : A -> bool) (xs : list A) : list A * list A :=
match xs with
| nil => (nil,nil)
| x :: xs' =>
if p x then
let (ys,zs) := span p xs' in (x::ys,zs)
else
(nil,xs)
end.
Fixpoint group_by A (e : A -> A -> bool) (xs : list A) : list (list A) :=
match xs with
| nil => nil
| x::xs' => let (ys,zs) := span (e x) xs' in (x::ys) :: group_by e zs
end.
Error: Cannot guess decreasing argument of fix. *)
(* What I ended up writing for group_by *)
Require Import Omega.
Require Import Recdef.
Definition span' X (p : X -> bool) : forall (xs : list X),
{x : list X * list X | le (length (snd x)) (length xs)}.
refine(
fix span xs :=
match xs
return {x : list X * list X | le (length (snd x)) (length xs)}
with
| nil => exist _ (nil,nil) _
| x :: xs' =>
if p x then
exist _ (x :: fst (proj1_sig (span xs')),
snd (proj1_sig (span xs'))) _
else
exist _ (nil,x::xs') _
end).
simpl. omega.
simpl in *. destruct (span xs'). simpl. omega.
simpl. omega.
Defined.
Function group_by (A : Type) (e : A -> A -> bool)
(xs : list A) {measure length xs}
: list (list A) :=
match xs with
| nil => nil
| x::xs' => (x :: fst (proj1_sig (span' (e x) xs')))
:: group_by e (snd (proj1_sig (span' (e x) xs')))
end.
intros. destruct (span' (e x) xs'). simpl. omega.
Defined.
(*
Eval compute in group_by beq_nat (1 :: 2 :: 2 :: 3 :: 3 :: 3 :: nil).
*)
Fixpoint zip_with_keep_rests (A B C : Type) (f : A -> B -> C)
(xs : list A) (ys : list B) : (list C * (list A * list B)) :=
match xs, ys with
| x::xs', y::ys' =>
let (zs, rest) := zip_with_keep_rests f xs' ys' in
(f x y :: zs, rest)
| nil, _ => (nil, (nil, ys))
| _, nil => (nil, (xs, nil))
end.
(*
Eval compute in zip_with_keep_rests plus (1 :: 2 :: 3 :: nil)
(1 :: 1 :: nil).
Eval compute in zip_with_keep_rests plus (1 :: 1 :: nil)
(1 :: 2 :: 3 :: nil).
*)
Definition zip_with (A B C : Type) (f : A -> B -> C)
(xs : list A) (ys : list B) : list C :=
fst (zip_with_keep_rests f xs ys).
Fixpoint consecutive_with (A B : Type) (f : A -> A -> B) (xs : list A)
: list B :=
match xs with
| nil => nil
| x1 :: xs' =>
match xs' with
| nil => nil
| x2 :: xs'' => f x1 x2 :: consecutive_with f xs'
end
end.
Definition consecutive (A : Type) := consecutive_with (@pair A A).
(*
Eval compute in consecutive (1 :: 2 :: 3 :: 4 :: 5 :: nil).
*)
Fixpoint last_with (A B : Type) (f : A -> B) (l : list A) (d : B) : B :=
match l with
| nil => d
| a :: nil => f a
| a :: l => last_with f l d
end.
Definition last_opt (A : Type) xs := last_with (@Some A) xs None.
(*
Eval compute in last_opt (1 :: 2 :: 3 :: nil).
Eval compute in last_opt (@nil nat).
*)
Fixpoint snoc (A : Type) (xs : list A) (y : A) : list A :=
match xs with
| nil => y :: nil
| x :: xs' => x :: (snoc xs' y)
end.
Fixpoint init (X : Type) (xs : list X) : list X :=
match xs with
| nil => nil
| x1 :: xs' =>
match xs' with
| nil => nil
| x2 :: xs'' => x1 :: (init xs')
end
end.
(*
Eval compute in init (1 :: 2 :: 3 :: nil).
Eval compute in init (1 :: nil).
Eval compute in init (@nil nat).
*)
(** * Finite and infinite traces *)
CoInductive trace (A : Type) : Type :=
| TNil : trace A
| TCons : A -> trace A -> trace A.
Implicit Arguments TNil [A].
Fixpoint list_to_trace (A : Type) (xs : list A) : trace A :=
match xs with
| nil => TNil
| x :: xs' => TCons x (list_to_trace xs')
end.
CoFixpoint map_trace (A B: Type) (f: A -> B) (t: trace A) : trace B :=
match t with
| TNil => TNil
| TCons a ta => TCons (f a) (map_trace f ta)
end.
Definition frob A (t : trace A) : trace A :=
match t with
| TCons h t' => TCons h t'
| TNil => TNil
end.
Theorem frob_eq : forall A (t : trace A), t = frob t.
destruct t; reflexivity.
Qed.
Definition nth_error_Z {A:Type} (l:list A) (n:Z) : option A :=
if Z.ltb n 0 then None
else nth_error l (Z.to_nat n).
Lemma nth_error_nil : forall A pc,
nth_error nil pc = @None A .
Proof.
induction pc; auto.
Qed.
Lemma nth_error_Z_nil : forall A i,
nth_error_Z nil i = @None A .
Proof.
intros. unfold nth_error_Z. destruct (i <? 0)%Z. auto. apply nth_error_nil.
Qed.
Lemma nth_error_Z_nat (A: Type) :
forall l i (v:A),
nth_error_Z l i = Some v ->
nth_error l (Z.to_nat i) = Some v.
Proof.
intros. unfold nth_error_Z in *. destruct (i <? 0)%Z. congruence.
auto.
Qed.
Lemma nth_error_cons (T: Type): forall n a (l:list T),
nth_error l n = nth_error (a :: l) (n+1)%nat.
Proof.
intros.
replace ((n+1)) with (S n) by (symmetry; apply addn1).
gdep n. induction n; intros.
destruct l ; simpl; auto.
destruct l. auto.
simpl. eauto.
Qed.
Lemma nth_error_Z_cons (T: Type): forall i (l1: list T) a,
(i >= 0)%Z ->
nth_error_Z l1 i = nth_error_Z (a::l1) (i+1).
Proof.
induction i; intros.
auto.
unfold nth_error_Z. simpl.
replace (Pos.to_nat (p + 1)) with ((Pos.to_nat p)+1)
by (rewrite Pos2Nat.inj_add; eauto).
eapply nth_error_cons with (l:= l1) (a:= a) ; eauto.
zify; omega.
Qed.
Lemma nth_error_Z_app:
forall (T : Type) (l1 l2: list T) (i : Z),
i = Z.of_nat (length l1) -> nth_error_Z (l1 ++ l2) i = nth_error_Z l2 0.
Proof.
induction l1; intros.
simpl in *. subst. auto.
simpl (length (a::l1)) in H. zify.
simpl.
replace i with (i - 1 + 1)%Z by omega.
erewrite <- nth_error_Z_cons by try omega.
eapply IHl1. omega.
Qed.
Lemma nth_error_Z_eq (T: Type) : forall (l1 l2: list T),
(forall i, nth_error_Z l1 i = nth_error_Z l2 i) ->
l1 = l2.
Proof.
induction l1; intros.
destruct l2 ; auto.
assert (HCont:= H 0%Z). inv HCont.
destruct l2.
assert (HCont:= H 0%Z). inv HCont.
assert (a = t).
assert (Helper:= H 0%Z). inv Helper. auto.
inv H0.
erewrite IHl1 ; eauto.
intros. destruct i.
erewrite nth_error_Z_cons with (a:= t); eauto; try omega.
erewrite H ; eauto.
erewrite nth_error_Z_cons with (a:= t); eauto; try (zify ; omega).
erewrite H ; eauto. symmetry. eapply nth_error_Z_cons; eauto. zify; omega.
destruct l1, l2 ; auto.
Qed.
Lemma nth_error_valid (T:Type): forall n (l:list T) v,
nth_error l n = Some v -> n < length l.
Proof.
induction n; intros; destruct l; simpl in H.
inv H.
inv H. simpl. constructor.
inv H.
pose proof (IHn _ _ H). simpl.
Admitted. (* Why does omega not work? *)
Lemma nth_error_Z_valid (T:Type): forall i (l:list T) v,
nth_error_Z l i = Some v -> (0 <= i)%Z /\ (Z.to_nat i < length l)%nat.
Proof.
intros.
unfold nth_error_Z in H. destruct ((i <? 0)%Z) eqn:?. inv H.
split. apply Z.ltb_ge; auto.
eapply nth_error_valid; eauto.
Qed.
Fixpoint update_list A (xs : list A) (n : nat) (y : A) : option (list A) :=
match xs, n with
| nil, _ => None
| _ :: xs', 0 => Some (y :: xs')
| a :: xs', S n' =>
match update_list xs' n' y with
| None => None
| Some l => Some (a::l)
end
end.
Lemma update_some_not_nil : forall A (v:A) l a l',
update_list l a v = Some l' ->
l' = nil ->
False.
Proof.
destruct l; intros.
destruct a ; simpl in * ; congruence.
destruct a0 ; simpl in *. congruence.
destruct update_list. inv H.
congruence.
congruence.
Qed.
Definition update_list_Z A (xs: list A) i y : option (list A) :=
if Z.ltb i 0 then
None
else
update_list xs (Z.to_nat i) y.
Lemma update_Z_some_not_nil : forall A (v:A) l i l',
update_list_Z l i v = Some l' ->
l' = nil ->
False.
Proof.
intros. unfold update_list_Z in *. destruct (i <? 0)%Z. congruence.
eapply update_some_not_nil; eauto.
Qed.
Lemma update_list_Z_nat (A: Type) (v:A) l i l':
update_list_Z l i v = Some l' ->
update_list l (Z.to_nat i) v = Some l'.
Proof.
intros. unfold update_list_Z in *. destruct (i <? 0)%Z. congruence.
auto.
Qed.
Lemma update_list_spec (T: Type) : forall (v: T) l a l',
update_list l a v = Some l' ->
nth_error l' a = Some v.
Proof.
induction l ; intros.
destruct a ; simpl in *; inv H.
destruct a0 ; simpl in *; inv H; auto.
case_eq (update_list l a0 v) ; intros ; rewrite -> H in * ; inv H1.
auto.
Qed.
Lemma update_list_Z_spec (T: Type) : forall (v: T) l a l',
update_list_Z l a v = Some l' ->
nth_error_Z l' a = Some v.
Proof.
unfold update_list_Z, nth_error_Z. intros.
destruct (a <? 0)%Z. congruence.
eapply update_list_spec; eauto.
Qed.
Lemma update_list_spec2 (T:Type) : forall (v:T) l n n' l',
update_list l n v = Some l' ->
n <> n' ->
nth_error l n' = nth_error l' n'.
Proof.
induction l; intros.
destruct n; simpl in *; inv H.
destruct n.
destruct n'.
exfalso; omega.
destruct l'; inv H.
simpl. auto.
destruct n'.
destruct l'; inv H.
destruct (update_list l n v); inv H2.
destruct (update_list l n v); inv H2.
auto.
destruct l'; inv H.
destruct (update_list l n v); inv H2.
simpl.
destruct (update_list l n v) eqn:?; inv H2.
eapply IHl; eauto.
Qed.
Lemma update_list_Z_spec2 (T:Type) : forall (v:T) l a a' l',
update_list_Z l a v = Some l' ->
a' <> a ->
nth_error_Z l a' = nth_error_Z l' a'.
Proof.
unfold update_list_Z, nth_error_Z. intros.
destruct (a <? 0)%Z eqn:?. congruence.
destruct (a' <? 0)%Z eqn:?. auto.
eapply update_list_spec2; eauto.
apply Z.ltb_ge in Heqb.
apply Z.ltb_ge in Heqb0.
intro. apply H0. apply Z2Nat.inj; eauto.
Qed.
Lemma update_list_Some (T: Type): forall (v: T) l n,
n < length l ->
exists l', update_list l n v = Some l'.
Proof.
induction l; intros.
- inv H.
- destruct n.
+ simpl. eauto.
+ simpl. edestruct IHl as [l' E]. simpl in H. instantiate (1:= n). admit.
eexists. rewrite E. eauto.
Admitted.
Lemma valid_update :
forall T i (l : list T) x x',
nth_error_Z l i = Some x ->
exists l',
update_list_Z l i x' = Some l'.
Proof.
intros.
unfold nth_error_Z, update_list_Z in *.
destruct (i <? 0)%Z; try congruence.
- remember (Z.to_nat i) as n; clear Heqn.
generalize dependent n.
generalize dependent l.
induction l; intros.
+ destruct n; simpl in H; discriminate.
+ destruct n; simpl in *.
* simpl; eauto.
* simpl in *.
edestruct IHl as [l' Hl']; eauto.
rewrite Hl'. eauto.
Qed.
Definition swap T n (l : list T) : option (list T) :=
match l with
| nil => None
| y :: l' =>
match nth_error (y :: l') n with
| Some x => update_list (x :: l') n y
| None => None
end
end.
Lemma filter_cons_inv_strong :
forall X (l1 : list X) x2 l2
(f : X -> bool),
x2 :: l2 = filter f l1 ->
exists l11 l12,
l1 = l11 ++ l12 /\
filter f l11 = x2 :: nil /\
filter f l12 = l2.
Proof.
intros X l1.
induction l1 as [|x1 l1 IH]; simpl; try congruence.
intros.
destruct (f x1) eqn:E.
- exists (x1 :: nil).
exists l1.
simpl.
rewrite E.
inv H.
eauto.
- exploit IH; eauto.
clear IH.
intros [l11 [l12 [H1 [H2 H3]]]].
subst.
exists (x1 :: l11).
exists l12.
simpl.
rewrite E. eauto.
Qed.
Lemma filter_cons_inv :
forall A (f : A -> bool) a l1 l2,
a :: l1 = filter f l2 ->
exists l2', l1 = filter f l2'.
Proof.
induction l2 as [|a' l2 IH]; simpl. congruence.
destruct (f a'); intros H; auto.
inv H. eauto.
Qed.
Lemma filter_app :
forall X (l1 l2 : list X) (f : X -> bool),
filter f (l1 ++ l2) = filter f l1 ++ filter f l2.
Proof.
induction l1 as [|x l1 IH]; simpl; intros. trivial.
rewrite IH. destruct (f x); auto.
Qed.
Lemma update_list_Z_Some (T:Type): forall (v:T) l (i:Z),
(0 <= i)%Z ->
Z.to_nat i < length l ->
exists l', update_list_Z l i v = Some l'.
Proof.
intros. unfold update_list_Z.
destruct (i <? 0)%Z eqn:?.
- rewrite -> Z.ltb_lt in Heqb. omega.
- eapply update_list_Some; eauto.
Qed.
Lemma update_preserves_length: forall T a (vl:T) m m',
update_list m a vl = Some m' ->
length m' = length m.
Proof.
induction a; intros.
- destruct m; simpl in *.
+ inv H.
+ inversion H; subst; reflexivity.
- destruct m; simpl in *.
+ inv H.
+ destruct (update_list m a vl) eqn:?.
* exploit IHa; eauto.
inversion H; subst.
intros eq; rewrite <- eq; reflexivity.
* inv H.
Qed.
Lemma app_same_length_eq (T: Type): forall (l1 l2 l3 l4: list T),
l1++l2 = l3++l4 ->
length l1 = length l3 ->
l1 = l3.
Proof.
induction l1; intros; simpl in *.
destruct l3; auto. inv H0.
destruct l3. inv H0. simpl in *.
inv H. erewrite IHl1 ; eauto.
Qed.
Lemma app_same_length_eq_rest (T: Type): forall (l1 l2 l3 l4: list T),
l1++l2 = l3++l4 ->
length l1 = length l3 ->
l2 = l4.
Proof.
intros.
exploit app_same_length_eq; eauto.
intro Heq ; inv Heq.
gdep l3. induction l3 ; intros; auto.
simpl in *.
inv H. eauto.
Qed.
Definition is_some T (o : option T) :=
match o with
| Some _ => true
| None => false
end.
Definition remove_none {T} (l : list (option T)) :=
filter (@is_some _) l.
Inductive with_silent {T:Type} := | E (e:T) | Silent.
Notation "T +τ" := (@with_silent T) (at level 1).
Inductive match_actions {T1 T2} (match_events : T1 -> T2 -> Prop) : T1+τ -> T2+τ -> Prop :=
| match_actions_silent : match_actions match_events Silent Silent
| match_actions_event : forall e1 e2,
match_events e1 e2 -> match_actions match_events (E e1) (E e2).
(** Reflexive transitive closure. *)
Definition op_cons (E: Type) (oe: E+τ) (l: list E) :=
match oe with
| E e => e::l
| Silent => l
end.
Inductive star (S E: Type) (Rstep: S -> E+τ -> S -> Prop): S -> list E -> S -> Prop :=
| star_refl: forall s,
star Rstep s nil s
| star_step: forall s1 s2 s3 e t t',
Rstep s1 e s2 -> star Rstep s2 t s3 ->
t' = (op_cons e t) ->
star Rstep s1 t' s3.
Hint Constructors star.
Lemma op_cons_app : forall E (e: E+τ) t t', (op_cons e t)++t' = op_cons e (t++t').
Proof. intros. destruct e; reflexivity. Qed.
Lemma star_right : forall S E (Rstep: S -> E+τ -> S -> Prop) s1 s2 t,
star Rstep s1 t s2 ->
forall s3 e t',
Rstep s2 e s3 ->
t' = (t++(op_cons e nil)) ->
star Rstep s1 t' s3.
Proof.
induction 1; intros.
eapply star_step; eauto.
exploit IHstar; eauto. intros.
inv H3. rewrite op_cons_app; eauto.
Qed.
Inductive plus (S E: Type) (Rstep: S -> E+τ -> S -> Prop): S -> list E -> S -> Prop :=
| plus_step: forall s t s' e,
Rstep s e s' ->
t = (op_cons e nil) ->
plus Rstep s t s'
| plus_trans: forall s1 s2 s3 e t t',
Rstep s1 e s2 -> plus Rstep s2 t s3 ->
t' = (op_cons e t) ->
plus Rstep s1 t' s3.
Hint Constructors star.
Hint Constructors plus.
Lemma plus_right : forall E S (Rstep: S -> E+τ -> S -> Prop) s1 s2 t,
plus Rstep s1 t s2 ->
forall s3 e t',
t' = (t++(op_cons e nil)) ->
Rstep s2 e s3 -> plus Rstep s1 t' s3.
Proof.
induction 1; intros.
inv H1.
rewrite op_cons_app. simpl.
eapply plus_trans; eauto.
exploit IHplus; eauto.
inv H2. rewrite op_cons_app. eauto.
Qed.
Lemma step_star_plus :
forall (S E: Type)
(Rstep: S -> E+τ -> S -> Prop) s1 t s2
(STAR : star Rstep s1 t s2)
(NEQ : s1 <> s2),
plus Rstep s1 t s2.
Proof.
intros. inv STAR. congruence.
clear NEQ.
gdep e. gdep s1.
induction H0; subst; eauto.
Qed.
Hint Resolve step_star_plus.
Lemma star_trans: forall S E (Rstep: S -> E+τ -> S -> Prop) s0 t s1,
star Rstep s0 t s1 ->
forall t' s2,
star Rstep s1 t' s2 ->
star Rstep s0 (t++t') s2.
Proof.
induction 1.
- auto.
- inversion 1.
+ rewrite cats0.
subst; econstructor; eauto.
+ subst; econstructor; eauto.
rewrite op_cons_app; reflexivity.
Qed.
Fixpoint replicate T (a: T) n : list T :=
match n with
| O => nil
| S n => a::(replicate a n)
end.
Lemma nth_error_In :
forall T n (l : list T) (x : T),
nth_error l n = Some x ->
In x l.
Proof.
intros.
gdep l.
induction n as [|n IH]; intros l H; destruct l as [|x' l]; simpl in *;
try solve [inv H].
- inv H. auto.
- auto.
Qed.
Hint Resolve nth_error_In.
Lemma update_list_In :
forall T n x y (l l' : list T)
(UPD: update_list l n x = Some l')
(IN: In y l'),
y = x \/ In y l.
Proof.
induction n as [|n IH]; intros; destruct l as [|x' l]; simpl in *;
try solve [inv UPD].
- inv UPD. destruct IN; eauto.
- destruct (update_list l n x) as [l''|] eqn:UPD'; inv UPD.
destruct IN; auto.
exploit IH; eauto.
intros []; eauto.
Qed.
Lemma nth_error_app :
forall T n (l1 l2 : list T) x,
nth_error l1 n = Some x ->
nth_error (l1 ++ l2) n = Some x.
Proof.
induction n as [|n IH]; intros [|x' l1] l2 x H; simpl in *;
try solve [inv H]; auto.
Qed.
Lemma update_list_app :
forall T n x (l1 l1' l2 : list T)
(UPD : update_list l1 n x = Some l1'),
update_list (l1 ++ l2) n x = Some (l1' ++ l2).
Proof.
induction n; intros;
destruct l1 as [|x' l1]; simpl in *; allinv; auto.
destruct (update_list l1 n x) as [l1''|] eqn:UPD'; allinv.
erewrite IHn; eauto.
simpl.
reflexivity.
Qed.
Definition dropZ {X:Type} (z:Z) (xs:seq X) : seq X :=
if (z <? 0)%Z then
xs
else drop (Z.to_nat z) xs.
Lemma drop_cons : forall {X:Type} p (l : list X),
(p < size l)%nat ->
exists x,
drop p l = x :: drop (S p) l.
Proof.
move=> X; elim=> [|p IH] [|x l] H; simpl in *; try omega; eauto.
(* by rewrite drop0; eauto.
apply IH; omega.*)
Admitted.
Lemma dropZ_all: forall {X:Type} (xs:list X),
(dropZ (Z.of_nat (size xs)) xs = [::]).
Proof.
intros.
destruct (dropZ (Z.of_nat (size xs)) xs) eqn:E. auto.
exfalso.
unfold dropZ in E. destruct (Z.of_nat (size xs) <? 0)%Z eqn:M.