-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmobilenet.py
599 lines (511 loc) · 21.3 KB
/
mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
from torch import nn
__all__ = ['MobileNetV2']
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, norm_layer=None):
padding = (kernel_size - 1) // 2
if norm_layer is None:
norm_layer = nn.BatchNorm2d
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
norm_layer(out_planes),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, norm_layer=None):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class Sandglass(nn.Module):
def __init__(self, inp, oup, stride, reduce_ratio, norm_layer=None):
super(Sandglass, self).__init__()
self.stride = stride
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp / reduce_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
layers.extend([
# dw
ConvBNReLU(inp, inp, stride=1, groups=inp, norm_layer=norm_layer),
# pw-linear
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
norm_layer(hidden_dim),
# pw-relu6
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
nn.ReLU6(inplace=True),
# dw-liner
nn.Conv2d(oup, oup, 3, stride, 1, groups=oup, bias=False),
norm_layer(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class My_Sandglass(nn.Module):
def __init__(self, inp, oup, stride, reduce_ratio, norm_layer=None):
super(My_Sandglass, self).__init__()
self.stride = stride
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.act = nn.ReLU6(inplace=True)
hidden_dim = int(round(inp / reduce_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
self.dw1 = nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False)
self.bn1 = norm_layer(inp)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(inp, hidden_dim)
self.pw1 = nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False)
self.bn2 = norm_layer(hidden_dim)
self.pw2 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False)
self.bn3 = norm_layer(oup)
self.dw2 = nn.Conv2d(oup, oup, 3, stride, 1, groups=oup, bias=False)
self.bn4 = norm_layer(oup)
def forward(self, x):
y = self.dw1(x)
b, c, _, _ = y.size()
z = self.avg_pool(y).view(b, c)
z = self.fc(z).view(b, -1, 1, 1)
z = torch.clamp(z, 0, 1)
y = self.bn1(y)
y = self.act(y)
y = self.pw1(y)
y = self.bn2(y)
y = y * z
y = self.pw2(y)
y = self.bn3(y)
y = self.act(y)
y = self. dw2(y)
y = self.bn4(y)
if self.use_res_connect:
return x + y
else:
return y
def hard_sigmoid(x, inplace: bool = False):
if inplace:
return x.add_(3.).clamp_(0., 6.).div_(6.)
else:
return F.relu6(x + 3.) / 6.
class My_Sandglass_2(nn.Module):
def __init__(self, inp, oup, stride, reduce_ratio, norm_layer=None):
super(My_Sandglass_2, self).__init__()
self.stride = stride
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.act = nn.ReLU6(inplace=True)
hidden_dim = int(round(inp / reduce_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
self.dw1 = nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False)
self.bn1 = norm_layer(inp)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(inp, hidden_dim)
self.pw1 = nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False)
self.bn2 = norm_layer(hidden_dim)
self.pw2 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False)
self.bn3 = norm_layer(oup)
self.dw2 = nn.Conv2d(oup, oup, 3, stride, 1, groups=oup, bias=False)
self.bn4 = norm_layer(oup)
def forward(self, x):
y = self.dw1(x)
b, c, _, _ = y.size()
z = self.avg_pool(y).view(b, c)
z = self.fc(z).view(b, -1, 1, 1)
# z = torch.clamp(z, 0, 1)
z = hard_sigmoid(z, inplace=True)
y = self.bn1(y)
y = self.act(y)
y = self.pw1(y)
y = self.bn2(y)
y = y * z
y = self.pw2(y)
y = self.bn3(y)
y = self.act(y)
y = self. dw2(y)
y = self.bn4(y)
if self.use_res_connect:
return x + y
else:
return y
class SELayer(nn.Module):
def __init__(self, channel, reduction=4):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel))
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
y = torch.clamp(y, 0, 1)
return x * y
class MobileNetV2(nn.Module):
def __init__(self,
num_classes=1000,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None,
norm_layer=None):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenetv2
norm_layer: Module specifying the normalization layer to use
"""
super(MobileNetV2, self).__init__()
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, t, norm_layer=norm_layer))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(0.2),
# nn.Linear(self.last_channel, num_classes),
nn.Linear(output_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1 => must use reshape with x.shape[0]
x = nn.functional.adaptive_avg_pool2d(x, 1).reshape(x.shape[0], -1)
x = self.classifier(x)
return x
def forward(self, x):
return self._forward_impl(x)
class MobileNetV2_sandglass(nn.Module):
def __init__(self,
num_classes=1000,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None,
norm_layer=None):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenetv2
norm_layer: Module specifying the normalization layer to use
"""
super(MobileNetV2_sandglass, self).__init__()
if block is None:
block = Sandglass
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
# [6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * t * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, t, norm_layer=norm_layer))
input_channel = output_channel
features.extend(
[ConvBNReLU(960, 960, stride=1, groups=960, norm_layer=norm_layer),
# pw-linear
nn.Conv2d(960, 320, 1, 1, 0, bias=False),
norm_layer(320),]
)
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1 => must use reshape with x.shape[0]
x = nn.functional.adaptive_avg_pool2d(x, 1).reshape(x.shape[0], -1)
x = self.classifier(x)
return x
def forward(self, x):
return self._forward_impl(x)
class MobileNeXt(nn.Module):
def __init__(self,
num_classes=1000,
width_mult=1.0,
sandglass_setting=None,
round_nearest=8,
block=None,
norm_layer=None):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
sandglass_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenetv2
norm_layer: Module specifying the normalization layer to use
"""
super(MobileNeXt, self).__init__()
if block is None:
block = Sandglass
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if sandglass_setting is None:
sandglass_setting = [
# t, c, n, s
[2, 96, 1, 2],
[6, 144, 1, 1],
[6, 192, 3, 2],
[6, 288, 3, 2],
[6, 384, 4, 1],
[6, 576, 4, 2],
[6, 960, 3, 1],# [6, 960, 2, 1],
[6, 1280, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(sandglass_setting) == 0 or len(sandglass_setting[0]) != 4:
raise ValueError("sandglass_setting should be non-empty "
"or a 4-element list, got {}".format(sandglass_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)]
# building sandglass blocks
for t, c, n, s in sandglass_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, t, norm_layer=norm_layer))
input_channel = output_channel
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1 => must use reshape with x.shape[0]
x = nn.functional.adaptive_avg_pool2d(x, 1).reshape(x.shape[0], -1)
x = self.classifier(x)
return x
def forward(self, x):
return self._forward_impl(x)
def mobilenetv2_sandglass(**kwargs):
sandgrass_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 144, 2, 2],
[6, 192, 3, 2],
[6, 384, 4, 2],
[6, 576, 3, 1],
[6, 960, 3, 2],
[6, 1920, 1, 1],
# [1, 16, 1, 1],
# [6, 24, 2, 2],
# [6, 32, 3, 2],
# [6, 64, 4, 2],
# [6, 96, 3, 1],
# [6, 160, 3, 2],
# [6, 320, 1, 1],
]
block = Sandglass
return MobileNetV2(inverted_residual_setting=sandgrass_setting, block=block, **kwargs)
def my_mobilenext(**kwargs):
block = My_Sandglass
return MobileNeXt(block=block, **kwargs)
def my_mobilenext_2(**kwargs):
block = My_Sandglass_2
return MobileNeXt(block=block, **kwargs)
if __name__=='__main__':
import torch
from torchvision import models
model = MobileNeXt()
print('Total params: %f M' % (sum(p.numel() for p in model.parameters()) / 1024. / 1024.0))
print(len(list(model.modules())))
# model = my_mobilenext()
# print('Total params: %f M' % (sum(p.numel() for p in model.parameters()) / 1024. / 1024.0))
# print(len(list(model.modules())))
# model = MobileNetV2()
# print('Total params: %f M' % (sum(p.numel() for p in model.parameters()) / 1024. / 1024.0))
# print(len(list(model.modules())))
# model = models.mobilenet_v2(pretrained=False, width_mult=1.0)
# print('Total params: %f M' % (sum(p.numel() for p in model.parameters()) / 1024. / 1024.0))
# print(len(list(model.modules())))
# model =mobilenetv2_sandglass()
# print('Total params: %f M' % (sum(p.numel() for p in model.parameters()) / 1024. / 1024.0))
# print(len(list(model.modules())))
# model = MobileNetV2_sandglass()
# print('Total params: %f M' % (sum(p.numel() for p in model.parameters()) / 1024. / 1024.0))
# print(len(list(model.modules())))
# model = InvertedResidual(32, 32, 1, 6)
# print('InvertedResidual params: %.f' % (sum(p.numel() for p in model.parameters())))
# print(len(list(model.modules())))
# print(model)
# model = Sandglass(192, 192, 1, 6)
# print('Sandglass params: %.f' % (sum(p.numel() for p in model.parameters())))
# print(len(list(model.modules())))
# # print(model)
# model = My_Sandglass(192, 192, 1, 6)
# print('Sandglass params: %.f' % (sum(p.numel() for p in model.parameters())))
# print(len(list(model.modules())))
# print(model)
# model.eval()
# # print(model)
input = torch.randn(1, 3, 224, 224)
# y = model(input)
# # print(y.shape)
# print('Total params: %f M' % (sum(p.numel() for p in model.parameters())/ 1024. / 1024.0))
from thop import profile
flops, params = profile(model, inputs=[input])
print(flops)
print(params)
print('Total params: %f M' % (sum(p.numel() for p in model.parameters())))