-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathdemo.py
486 lines (427 loc) · 18.7 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import configparser
import argparse
import shutil
import glob
import uuid
import ast
import os
import pufferlib
import pufferlib.utils
import pufferlib.vector
import pufferlib.cleanrl
from rich_argparse import RichHelpFormatter
from rich.console import Console
from rich.traceback import install
install(show_locals=False) # Rich tracebacks
import signal # Aggressively exit on ctrl+c
signal.signal(signal.SIGINT, lambda sig, frame: os._exit(0))
import clean_pufferl
def make_policy(env, policy_cls, rnn_cls, args):
policy = policy_cls(env, **args['policy'])
if rnn_cls is not None:
policy = rnn_cls(env, policy, **args['rnn'])
policy = pufferlib.cleanrl.RecurrentPolicy(policy)
else:
policy = pufferlib.cleanrl.Policy(policy)
return policy.to(args['train']['device'])
def init_wandb(args, name, id=None, resume=True):
import wandb
wandb.init(
id=id or wandb.util.generate_id(),
project=args['wandb_project'],
group=args['wandb_group'],
allow_val_change=True,
save_code=True,
resume=resume,
config=args,
name=name,
)
return wandb
def sweep(args, env_name, make_env, policy_cls, rnn_cls):
import wandb
sweep_id = wandb.sweep(sweep=args['sweep'], project=args['wandb_project'])
def main():
try:
wandb = init_wandb(args, env_name, id=args['exp_id'])
args['train'].update(wandb.config.train)
train(args, make_env, policy_cls, rnn_cls, wandb)
except Exception as e:
Console().print_exception()
wandb.agent(sweep_id, main, count=100)
### CARBS Sweeps
def sweep_carbs(args, env_name, make_env, policy_cls, rnn_cls):
import numpy as np
import sys
from math import log, ceil, floor
from carbs import CARBS
from carbs import CARBSParams
from carbs import LinearSpace
from carbs import LogSpace
from carbs import LogitSpace
from carbs import ObservationInParam
from carbs import ParamDictType
from carbs import Param
def closest_power(x):
possible_results = floor(log(x, 2)), ceil(log(x, 2))
return int(2**min(possible_results, key= lambda z: abs(x-2**z)))
def carbs_param(group, name, space, wandb_params, mmin=None, mmax=None,
search_center=None, is_integer=False, rounding_factor=1, scale=1):
wandb_param = wandb_params[group]['parameters'][name]
if 'values' in wandb_param:
values = wandb_param['values']
mmin = min(values)
mmax = max(values)
if mmin is None:
mmin = float(wandb_param['min'])
if mmax is None:
mmax = float(wandb_param['max'])
if space == 'log':
Space = LogSpace
if search_center is None:
search_center = 2**(np.log2(mmin) + np.log2(mmax)/2)
elif space == 'linear':
Space = LinearSpace
if search_center is None:
search_center = (mmin + mmax)/2
elif space == 'logit':
Space = LogitSpace
assert mmin == 0
assert mmax == 1
assert search_center is not None
else:
raise ValueError(f'Invalid CARBS space: {space} (log/linear)')
return Param(
name=f'{group}/{name}',
space=Space(
min=mmin,
max=mmax,
is_integer=is_integer,
rounding_factor=rounding_factor,
scale=scale,
),
search_center=search_center,
)
if not os.path.exists('checkpoints'):
os.system('mkdir checkpoints')
import wandb
sweep_id = wandb.sweep(
sweep=args['sweep'],
project="carbs",
)
target_metric = args['sweep']['metric']['name'].split('/')[-1]
sweep_parameters = args['sweep']['parameters']
#wandb_env_params = sweep_parameters['env']['parameters']
#wandb_policy_params = sweep_parameters['policy']['parameters']
# Must be hardcoded and match wandb sweep space for now
param_spaces = []
if 'total_timesteps' in sweep_parameters['train']['parameters']:
time_param = sweep_parameters['train']['parameters']['total_timesteps']
min_timesteps = time_param['min']
param_spaces.append(carbs_param('train', 'total_timesteps', 'log', sweep_parameters,
search_center=min_timesteps, is_integer=True))
batch_param = sweep_parameters['train']['parameters']['batch_size']
default_batch = (batch_param['max'] - batch_param['min']) // 2
minibatch_param = sweep_parameters['train']['parameters']['minibatch_size']
default_minibatch = (minibatch_param['max'] - minibatch_param['min']) // 2
if 'env' in sweep_parameters:
env_params = sweep_parameters['env']['parameters']
# MOBA
if 'reward_death' in env_params:
param_spaces.append(carbs_param('env', 'reward_death',
'linear', sweep_parameters, search_center=-0.42))
if 'reward_xp' in env_params:
param_spaces.append(carbs_param('env', 'reward_xp',
'linear', sweep_parameters, search_center=0.015, scale=0.05))
if 'reward_distance' in env_params:
param_spaces.append(carbs_param('env', 'reward_distance',
'linear', sweep_parameters, search_center=0.15, scale=0.5))
if 'reward_tower' in env_params:
param_spaces.append(carbs_param('env', 'reward_tower',
'linear', sweep_parameters, search_center=4.0))
# Atari
if 'frameskip' in env_params:
param_spaces.append(carbs_param('env', 'frameskip',
'linear', sweep_parameters, search_center=4, is_integer=True))
if 'repeat_action_probability' in env_params:
param_spaces.append(carbs_param('env', 'repeat_action_probability',
'logit', sweep_parameters, search_center=0.25))
param_spaces += [
#carbs_param('cnn_channels', 'linear', wandb_policy_params, search_center=32, is_integer=True),
#carbs_param('hidden_size', 'linear', wandb_policy_params, search_center=128, is_integer=True),
#carbs_param('vision', 'linear', search_center=5, is_integer=True),
carbs_param('train', 'learning_rate', 'log', sweep_parameters, search_center=1e-3),
carbs_param('train', 'gamma', 'logit', sweep_parameters, search_center=0.95),
carbs_param('train', 'gae_lambda', 'logit', sweep_parameters, search_center=0.90),
carbs_param('train', 'update_epochs', 'linear', sweep_parameters,
search_center=1, scale=3, is_integer=True),
carbs_param('train', 'clip_coef', 'logit', sweep_parameters, search_center=0.1),
carbs_param('train', 'vf_coef', 'logit', sweep_parameters, search_center=0.5),
carbs_param('train', 'vf_clip_coef', 'logit', sweep_parameters, search_center=0.1),
carbs_param('train', 'max_grad_norm', 'linear', sweep_parameters, search_center=0.5),
carbs_param('train', 'ent_coef', 'log', sweep_parameters, search_center=0.01),
carbs_param('train', 'batch_size', 'log', sweep_parameters,
search_center=default_batch, is_integer=True),
carbs_param('train', 'minibatch_size', 'log', sweep_parameters,
search_center=default_minibatch, is_integer=True),
carbs_param('train', 'bptt_horizon', 'log', sweep_parameters,
search_center=16, is_integer=True),
]
carbs_params = CARBSParams(
better_direction_sign=1,
is_wandb_logging_enabled=False,
resample_frequency=5,
num_random_samples=len(param_spaces),
max_suggestion_cost=args['max_suggestion_cost'],
is_saved_on_every_observation=False,
)
carbs = CARBS(carbs_params, param_spaces)
# GPUDrive doesn't let you reinit the vecenv, so we have to cache it
cache_vecenv = args['env_name'] == 'gpudrive'
elos = {'model_random.pt': 1000}
vecenv = {'vecenv': None} # can't reassign otherwise
shutil.rmtree('moba_elo', ignore_errors=True)
os.mkdir('moba_elo')
import time, torch
def main():
print('Vecenv:', vecenv)
# set torch and pytorch seeds to current time
np.random.seed(int(time.time()))
torch.manual_seed(int(time.time()))
wandb = init_wandb(args, env_name, id=args['exp_id'])
wandb.config.__dict__['_locked'] = {}
orig_suggestion = carbs.suggest().suggestion
suggestion = orig_suggestion.copy()
print('Suggestion:', suggestion)
#cnn_channels = suggestion.pop('cnn_channels')
#hidden_size = suggestion.pop('hidden_size')
#vision = suggestion.pop('vision')
#wandb.config.env['vision'] = vision
#wandb.config.policy['cnn_channels'] = cnn_channels
#wandb.config.policy['hidden_size'] = hidden_size
train_suggestion = {k.split('/')[1]: v for k, v in suggestion.items() if k.startswith('train/')}
env_suggestion = {k.split('/')[1]: v for k, v in suggestion.items() if k.startswith('env/')}
args['train'].update(train_suggestion)
args['train']['batch_size'] = closest_power(
train_suggestion['batch_size'])
args['train']['minibatch_size'] = closest_power(
train_suggestion['minibatch_size'])
args['train']['bptt_horizon'] = closest_power(
train_suggestion['bptt_horizon'])
args['env'].update(env_suggestion)
args['track'] = True
wandb.config.update({'train': args['train']}, allow_val_change=True)
wandb.config.update({'env': args['env']}, allow_val_change=True)
#args.env.__dict__['vision'] = vision
#args['policy']['cnn_channels'] = cnn_channels
#args['policy']['hidden_size'] = hidden_size
#args['rnn']['input_size'] = hidden_size
#args['rnn']['hidden_size'] = hidden_size
print(wandb.config.train)
print(wandb.config.env)
print(wandb.config.policy)
try:
stats, uptime, new_elos, vecenv['vecenv'] = train(args, make_env, policy_cls, rnn_cls,
wandb, elos=elos, vecenv=vecenv['vecenv'] if cache_vecenv else None)
elos.update(new_elos)
except Exception as e:
import traceback
traceback.print_exc()
else:
observed_value = stats[target_metric]
print('Observed value:', observed_value)
print('Uptime:', uptime)
carbs.observe(
ObservationInParam(
input=orig_suggestion,
output=observed_value,
cost=uptime,
)
)
wandb.agent(sweep_id, main, count=500)
def train(args, make_env, policy_cls, rnn_cls, wandb,
eval_frac=0.1, elos={'model_random.pt': 1000}, vecenv=None, subprocess=False, queue=None):
if subprocess:
from multiprocessing import Process, Queue
queue = Queue()
p = Process(target=train, args=(args, make_env, policy_cls, rnn_cls, wandb,
eval_frac, elos, False, queue))
p.start()
p.join()
stats, uptime, elos = queue.get()
if args['vec'] == 'serial':
vec = pufferlib.vector.Serial
elif args['vec'] == 'multiprocessing':
vec = pufferlib.vector.Multiprocessing
elif args['vec'] == 'ray':
vec = pufferlib.vector.Ray
elif args['vec'] == 'native':
vec = pufferlib.environment.PufferEnv
else:
raise ValueError(f'Invalid --vec (serial/multiprocessing/ray/native).')
if vecenv is None:
vecenv = pufferlib.vector.make(
make_env,
env_kwargs=args['env'],
num_envs=args['train']['num_envs'],
num_workers=args['train']['num_workers'],
batch_size=args['train']['env_batch_size'],
zero_copy=args['train']['zero_copy'],
overwork=args['vec_overwork'],
backend=vec,
)
policy = make_policy(vecenv.driver_env, policy_cls, rnn_cls, args)
'''
if env_name == 'moba':
import torch
os.makedirs('moba_elo', exist_ok=True)
torch.save(policy, os.path.join('moba_elo', 'model_random.pt'))
'''
train_config = pufferlib.namespace(**args['train'], env=env_name,
exp_id=args['exp_id'] or env_name + '-' + str(uuid.uuid4())[:8])
data = clean_pufferl.create(train_config, vecenv, policy, wandb=wandb)
while data.global_step < train_config.total_timesteps:
clean_pufferl.evaluate(data)
clean_pufferl.train(data)
uptime = data.profile.uptime
steps_evaluated = 0
steps_to_eval = int(args['train']['total_timesteps'] * eval_frac)
batch_size = args['train']['batch_size']
while steps_evaluated < steps_to_eval:
stats, _ = clean_pufferl.evaluate(data)
steps_evaluated += batch_size
clean_pufferl.mean_and_log(data)
'''
if env_name == 'moba':
exp_n = len(elos)
model_name = f'model_{exp_n}.pt'
torch.save(policy, os.path.join('moba_elo', model_name))
from evaluate_elos import calc_elo
elos = calc_elo(model_name, 'moba_elo', elos)
stats['elo'] = elos[model_name]
if wandb is not None:
wandb.log({'environment/elo': elos[model_name]})
'''
clean_pufferl.close(data)
if queue is not None:
queue.put((stats, uptime, elos))
return stats, uptime, elos, vecenv
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=f':blowfish: PufferLib [bright_cyan]{pufferlib.__version__}[/]'
' demo options. Shows valid args for your env and policy',
formatter_class=RichHelpFormatter, add_help=False)
parser.add_argument('--env', '--environment', type=str,
default='puffer_squared', help='Name of specific environment to run')
parser.add_argument('--mode', type=str, default='train',
choices='train eval evaluate sweep sweep-carbs autotune profile'.split())
parser.add_argument('--vec-overwork', action='store_true',
help='Allow vectorization to use >1 worker/core. Not recommended.')
parser.add_argument('--eval-model-path', type=str, default=None,
help='Path to a pretrained checkpoint')
parser.add_argument('--baseline', action='store_true',
help='Load pretrained model from WandB if available')
parser.add_argument('--render-mode', type=str, default='auto',
choices=['auto', 'human', 'ansi', 'rgb_array', 'raylib', 'None'])
parser.add_argument('--exp-id', '--exp-name', type=str,
default=None, help='Resume from experiment')
parser.add_argument('--track', action='store_true', help='Track on WandB')
parser.add_argument('--wandb-project', type=str, default='pufferlib')
parser.add_argument('--wandb-group', type=str, default='debug')
args = parser.parse_known_args()[0]
file_paths = glob.glob('config/**/*.ini', recursive=True)
for path in file_paths:
p = configparser.ConfigParser()
p.read('config/default.ini')
subconfig = os.path.join(*path.split('/')[:-1] + ['default.ini'])
if subconfig in file_paths:
p.read(subconfig)
p.read(path)
if args.env in p['base']['env_name'].split():
break
else:
raise Exception('No config for env_name {}'.format(args.env))
for section in p.sections():
for key in p[section]:
if section == 'base':
argparse_key = f'--{key}'.replace('_', '-')
else:
argparse_key = f'--{section}.{key}'.replace('_', '-')
parser.add_argument(argparse_key, default=p[section][key])
# Late add help so you get a dynamic menu based on the env
parser.add_argument('-h', '--help', default=argparse.SUPPRESS,
action='help', help='Show this help message and exit')
parsed = parser.parse_args().__dict__
args = {'env': {}, 'policy': {}, 'rnn': {}}
env_name = parsed.pop('env')
for key, value in parsed.items():
next = args
for subkey in key.split('.'):
if subkey not in next:
next[subkey] = {}
prev = next
next = next[subkey]
try:
prev[subkey] = ast.literal_eval(value)
except:
prev[subkey] = value
package = args['package']
module_name = f'pufferlib.environments.{package}'
if package == 'ocean':
module_name = 'pufferlib.ocean'
import importlib
env_module = importlib.import_module(module_name)
make_env = env_module.env_creator(env_name)
policy_cls = getattr(env_module.torch, args['policy_name'])
rnn_name = args['rnn_name']
rnn_cls = None
if rnn_name is not None:
rnn_cls = getattr(env_module.torch, args['rnn_name'])
if args['baseline']:
assert args['mode'] in ('train', 'eval', 'evaluate')
args['track'] = True
version = '.'.join(pufferlib.__version__.split('.')[:2])
args['exp_id'] = f'puf-{version}-{env_name}'
args['wandb_group'] = f'puf-{version}-baseline'
shutil.rmtree(f'experiments/{args["exp_id"]}', ignore_errors=True)
run = init_wandb(args, args['exp_id'], resume=False)
if args['mode'] in ('eval', 'evaluate'):
model_name = f'puf-{version}-{env_name}_model:latest'
artifact = run.use_artifact(model_name)
data_dir = artifact.download()
model_file = max(os.listdir(data_dir))
args['eval_model_path'] = os.path.join(data_dir, model_file)
if args['mode'] == 'train':
wandb = None
if args['track']:
wandb = init_wandb(args, env_name, id=args['exp_id'])
train(args, make_env, policy_cls, rnn_cls, wandb=wandb)
elif args['mode'] in ('eval', 'evaluate'):
vec = pufferlib.vector.Serial
if args['vec'] == 'native':
vec = pufferlib.environment.PufferEnv
clean_pufferl.rollout(
make_env,
args['env'],
policy_cls=policy_cls,
rnn_cls=rnn_cls,
agent_creator=make_policy,
agent_kwargs=args,
backend=vec,
model_path=args['eval_model_path'],
render_mode=args['render_mode'],
device=args['train']['device'],
)
elif args['mode'] == 'sweep':
args['track'] = True
sweep(args, env_name, make_env, policy_cls, rnn_cls)
elif args['mode'] == 'sweep-carbs':
sweep_carbs(args, env_name, make_env, policy_cls, rnn_cls)
elif args['mode'] == 'autotune':
pufferlib.vector.autotune(make_env, batch_size=args['train']['env_batch_size'])
elif args['mode'] == 'profile':
import cProfile
cProfile.run('train(args, make_env, policy_cls, rnn_cls, wandb=None)', 'stats.profile')
import pstats
from pstats import SortKey
p = pstats.Stats('stats.profile')
p.sort_stats(SortKey.TIME).print_stats(10)