-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathclean_pufferl.py
766 lines (653 loc) · 27.6 KB
/
clean_pufferl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
from pdb import set_trace as T
import numpy as np
import os
import random
import psutil
import time
from threading import Thread
from collections import defaultdict, deque
import rich
from rich.console import Console
from rich.table import Table
import torch
import pufferlib
import pufferlib.utils
import pufferlib.pytorch
torch.set_float32_matmul_precision('high')
# Fast Cython GAE implementation
#import pyximport
#pyximport.install(setup_args={"include_dirs": np.get_include()})
from c_gae import compute_gae
def create(config, vecenv, policy, optimizer=None, wandb=None):
seed_everything(config.seed, config.torch_deterministic)
profile = Profile()
losses = make_losses()
utilization = Utilization()
msg = f'Model Size: {abbreviate(count_params(policy))} parameters'
print_dashboard(config.env, utilization, 0, 0, profile, losses, {}, msg, clear=True)
vecenv.async_reset(config.seed)
obs_shape = vecenv.single_observation_space.shape
obs_dtype = vecenv.single_observation_space.dtype
atn_shape = vecenv.single_action_space.shape
atn_dtype = vecenv.single_action_space.dtype
total_agents = vecenv.num_agents
lstm = policy.lstm if hasattr(policy, 'lstm') else None
experience = Experience(config.batch_size, config.bptt_horizon,
config.minibatch_size, obs_shape, obs_dtype, atn_shape, atn_dtype,
config.cpu_offload, config.device, lstm, total_agents)
uncompiled_policy = policy
if config.compile:
policy = torch.compile(policy, mode=config.compile_mode)
optimizer = torch.optim.Adam(policy.parameters(),
lr=config.learning_rate, eps=1e-5)
return pufferlib.namespace(
config=config,
vecenv=vecenv,
policy=policy,
uncompiled_policy=uncompiled_policy,
optimizer=optimizer,
experience=experience,
profile=profile,
losses=losses,
wandb=wandb,
global_step=0,
epoch=0,
stats=defaultdict(list),
msg=msg,
last_log_time=0,
utilization=utilization,
)
@pufferlib.utils.profile
def evaluate(data):
config, profile, experience = data.config, data.profile, data.experience
with profile.eval_misc:
policy = data.policy
infos = defaultdict(list)
lstm_h, lstm_c = experience.lstm_h, experience.lstm_c
while not experience.full:
with profile.env:
o, r, d, t, info, env_id, mask = data.vecenv.recv()
env_id = env_id.tolist()
with profile.eval_misc:
data.global_step += sum(mask)
o = torch.as_tensor(o)
o_device = o.to(config.device)
r = torch.as_tensor(r)
d = torch.as_tensor(d)
with profile.eval_forward, torch.no_grad():
# TODO: In place-update should be faster. Leaking 7% speed max
# Also should be using a cuda tensor to index
if lstm_h is not None:
h = lstm_h[:, env_id]
c = lstm_c[:, env_id]
actions, logprob, _, value, (h, c) = policy(o_device, (h, c))
lstm_h[:, env_id] = h
lstm_c[:, env_id] = c
else:
actions, logprob, _, value = policy(o_device)
if config.device == 'cuda':
torch.cuda.synchronize()
with profile.eval_misc:
value = value.flatten()
actions = actions.cpu().numpy()
mask = torch.as_tensor(mask)# * policy.mask)
o = o if config.cpu_offload else o_device
experience.store(o, value, actions, logprob, r, d, env_id, mask)
for i in info:
for k, v in pufferlib.utils.unroll_nested_dict(i):
infos[k].append(v)
with profile.env:
data.vecenv.send(actions)
with profile.eval_misc:
for k, v in infos.items():
if '_map' in k and data.wandb is not None:
data.stats[f'Media/{k}'] = data.wandb.Image(v[0])
continue
if isinstance(v, np.ndarray):
v = v.tolist()
try:
iter(v)
except TypeError:
data.stats[k].append(v)
else:
data.stats[k] += v
# TODO: Better way to enable multiple collects
data.experience.ptr = 0
data.experience.step = 0
return data.stats, infos
@pufferlib.utils.profile
def train(data):
config, profile, experience = data.config, data.profile, data.experience
data.losses = make_losses()
losses = data.losses
with profile.train_misc:
idxs = experience.sort_training_data()
dones_np = experience.dones_np[idxs]
values_np = experience.values_np[idxs]
rewards_np = experience.rewards_np[idxs]
# TODO: bootstrap between segment bounds
advantages_np = compute_gae(dones_np, values_np,
rewards_np, config.gamma, config.gae_lambda)
experience.flatten_batch(advantages_np)
# Optimizing the policy and value network
total_minibatches = experience.num_minibatches * config.update_epochs
mean_pg_loss, mean_v_loss, mean_entropy_loss = 0, 0, 0
mean_old_kl, mean_kl, mean_clipfrac = 0, 0, 0
for epoch in range(config.update_epochs):
lstm_state = None
for mb in range(experience.num_minibatches):
with profile.train_misc:
obs = experience.b_obs[mb]
obs = obs.to(config.device)
atn = experience.b_actions[mb]
log_probs = experience.b_logprobs[mb]
val = experience.b_values[mb]
adv = experience.b_advantages[mb]
ret = experience.b_returns[mb]
with profile.train_forward:
if experience.lstm_h is not None:
_, newlogprob, entropy, newvalue, lstm_state = data.policy(
obs, state=lstm_state, action=atn)
lstm_state = (lstm_state[0].detach(), lstm_state[1].detach())
else:
_, newlogprob, entropy, newvalue = data.policy(
obs.reshape(-1, *data.vecenv.single_observation_space.shape),
action=atn,
)
if config.device == 'cuda':
torch.cuda.synchronize()
with profile.train_misc:
logratio = newlogprob - log_probs.reshape(-1)
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfrac = ((ratio - 1.0).abs() > config.clip_coef).float().mean()
adv = adv.reshape(-1)
if config.norm_adv:
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Policy loss
pg_loss1 = -adv * ratio
pg_loss2 = -adv * torch.clamp(
ratio, 1 - config.clip_coef, 1 + config.clip_coef
)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if config.clip_vloss:
v_loss_unclipped = (newvalue - ret) ** 2
v_clipped = val + torch.clamp(
newvalue - val,
-config.vf_clip_coef,
config.vf_clip_coef,
)
v_loss_clipped = (v_clipped - ret) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - ret) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - config.ent_coef * entropy_loss + v_loss * config.vf_coef
with profile.learn:
data.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(data.policy.parameters(), config.max_grad_norm)
data.optimizer.step()
if config.device == 'cuda':
torch.cuda.synchronize()
with profile.train_misc:
losses.policy_loss += pg_loss.item() / total_minibatches
losses.value_loss += v_loss.item() / total_minibatches
losses.entropy += entropy_loss.item() / total_minibatches
losses.old_approx_kl += old_approx_kl.item() / total_minibatches
losses.approx_kl += approx_kl.item() / total_minibatches
losses.clipfrac += clipfrac.item() / total_minibatches
if config.target_kl is not None:
if approx_kl > config.target_kl:
break
with profile.train_misc:
if config.anneal_lr:
frac = 1.0 - data.global_step / config.total_timesteps
lrnow = frac * config.learning_rate
data.optimizer.param_groups[0]["lr"] = lrnow
y_pred = experience.values_np
y_true = experience.returns_np
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
losses.explained_variance = explained_var
data.epoch += 1
done_training = data.global_step >= config.total_timesteps
# TODO: beter way to get episode return update without clogging dashboard
# TODO: make this appear faster
if done_training or profile.update(data):
mean_and_log(data)
print_dashboard(config.env, data.utilization, data.global_step, data.epoch,
profile, data.losses, data.stats, data.msg)
data.stats = defaultdict(list)
if data.epoch % config.checkpoint_interval == 0 or done_training:
save_checkpoint(data)
data.msg = f'Checkpoint saved at update {data.epoch}'
def mean_and_log(data):
for k in list(data.stats.keys()):
v = data.stats[k]
try:
v = np.mean(v)
except:
del data.stats[k]
data.stats[k] = v
if data.wandb is None:
return
data.last_log_time = time.time()
data.wandb.log({
'0verview/SPS': data.profile.SPS,
'0verview/agent_steps': data.global_step,
'0verview/epoch': data.epoch,
'0verview/learning_rate': data.optimizer.param_groups[0]["lr"],
**{f'environment/{k}': v for k, v in data.stats.items()},
**{f'losses/{k}': v for k, v in data.losses.items()},
**{f'performance/{k}': v for k, v in data.profile},
})
def close(data):
data.vecenv.close()
data.utilization.stop()
config = data.config
if data.wandb is not None:
artifact_name = f"{config.exp_id}_model"
artifact = data.wandb.Artifact(artifact_name, type="model")
model_path = save_checkpoint(data)
artifact.add_file(model_path)
data.wandb.run.log_artifact(artifact)
data.wandb.finish()
class Profile:
SPS: ... = 0
uptime: ... = 0
remaining: ... = 0
eval_time: ... = 0
env_time: ... = 0
eval_forward_time: ... = 0
eval_misc_time: ... = 0
train_time: ... = 0
train_forward_time: ... = 0
learn_time: ... = 0
train_misc_time: ... = 0
def __init__(self):
self.start = time.time()
self.env = pufferlib.utils.Profiler()
self.eval_forward = pufferlib.utils.Profiler()
self.eval_misc = pufferlib.utils.Profiler()
self.train_forward = pufferlib.utils.Profiler()
self.learn = pufferlib.utils.Profiler()
self.train_misc = pufferlib.utils.Profiler()
self.prev_steps = 0
def __iter__(self):
yield 'SPS', self.SPS
yield 'uptime', self.uptime
yield 'remaining', self.remaining
yield 'eval_time', self.eval_time
yield 'env_time', self.env_time
yield 'eval_forward_time', self.eval_forward_time
yield 'eval_misc_time', self.eval_misc_time
yield 'train_time', self.train_time
yield 'train_forward_time', self.train_forward_time
yield 'learn_time', self.learn_time
yield 'train_misc_time', self.train_misc_time
@property
def epoch_time(self):
return self.train_time + self.eval_time
def update(self, data, interval_s=1):
global_step = data.global_step
if global_step == 0:
return True
uptime = time.time() - self.start
if uptime - self.uptime < interval_s:
return False
self.SPS = (global_step - self.prev_steps) / (uptime - self.uptime)
self.prev_steps = global_step
self.uptime = uptime
self.remaining = (data.config.total_timesteps - global_step) / self.SPS
self.eval_time = data._timers['evaluate'].elapsed
self.eval_forward_time = self.eval_forward.elapsed
self.env_time = self.env.elapsed
self.eval_misc_time = self.eval_misc.elapsed
self.train_time = data._timers['train'].elapsed
self.train_forward_time = self.train_forward.elapsed
self.learn_time = self.learn.elapsed
self.train_misc_time = self.train_misc.elapsed
return True
def make_losses():
return pufferlib.namespace(
policy_loss=0,
value_loss=0,
entropy=0,
old_approx_kl=0,
approx_kl=0,
clipfrac=0,
explained_variance=0,
)
class Experience:
'''Flat tensor storage and array views for faster indexing'''
def __init__(self, batch_size, bptt_horizon, minibatch_size, obs_shape, obs_dtype, atn_shape, atn_dtype,
cpu_offload=False, device='cuda', lstm=None, lstm_total_agents=0):
if minibatch_size is None:
minibatch_size = batch_size
obs_dtype = pufferlib.pytorch.numpy_to_torch_dtype_dict[obs_dtype]
atn_dtype = pufferlib.pytorch.numpy_to_torch_dtype_dict[atn_dtype]
pin = device == 'cuda' and cpu_offload
obs_device = device if not pin else 'cpu'
self.obs=torch.zeros(batch_size, *obs_shape, dtype=obs_dtype,
pin_memory=pin, device=device if not pin else 'cpu')
self.actions=torch.zeros(batch_size, *atn_shape, dtype=atn_dtype, pin_memory=pin)
self.logprobs=torch.zeros(batch_size, pin_memory=pin)
self.rewards=torch.zeros(batch_size, pin_memory=pin)
self.dones=torch.zeros(batch_size, pin_memory=pin)
self.truncateds=torch.zeros(batch_size, pin_memory=pin)
self.values=torch.zeros(batch_size, pin_memory=pin)
#self.obs_np = np.asarray(self.obs)
self.actions_np = np.asarray(self.actions)
self.logprobs_np = np.asarray(self.logprobs)
self.rewards_np = np.asarray(self.rewards)
self.dones_np = np.asarray(self.dones)
self.truncateds_np = np.asarray(self.truncateds)
self.values_np = np.asarray(self.values)
self.lstm_h = self.lstm_c = None
if lstm is not None:
assert lstm_total_agents > 0
shape = (lstm.num_layers, lstm_total_agents, lstm.hidden_size)
self.lstm_h = torch.zeros(shape).to(device)
self.lstm_c = torch.zeros(shape).to(device)
num_minibatches = batch_size / minibatch_size
self.num_minibatches = int(num_minibatches)
if self.num_minibatches != num_minibatches:
raise ValueError('batch_size must be divisible by minibatch_size')
minibatch_rows = minibatch_size / bptt_horizon
self.minibatch_rows = int(minibatch_rows)
if self.minibatch_rows != minibatch_rows:
raise ValueError('minibatch_size must be divisible by bptt_horizon')
self.batch_size = batch_size
self.bptt_horizon = bptt_horizon
self.minibatch_size = minibatch_size
self.device = device
self.sort_keys = []
self.ptr = 0
self.step = 0
@property
def full(self):
return self.ptr >= self.batch_size
def store(self, obs, value, action, logprob, reward, done, env_id, mask):
# Mask learner and Ensure indices do not exceed batch size
ptr = self.ptr
indices = torch.where(mask)[0].numpy()[:self.batch_size - ptr]
end = ptr + len(indices)
self.obs[ptr:end] = obs.to(self.obs.device)[indices]
self.values_np[ptr:end] = value.cpu().numpy()[indices]
self.actions_np[ptr:end] = action[indices]
self.logprobs_np[ptr:end] = logprob.cpu().numpy()[indices]
self.rewards_np[ptr:end] = reward.cpu().numpy()[indices]
self.dones_np[ptr:end] = done.cpu().numpy()[indices]
self.sort_keys.extend([(env_id[i], self.step) for i in indices])
self.ptr = end
self.step += 1
def sort_training_data(self):
idxs = np.asarray(sorted(
range(len(self.sort_keys)), key=self.sort_keys.__getitem__))
self.b_idxs_obs = torch.as_tensor(idxs.reshape(
self.minibatch_rows, self.num_minibatches, self.bptt_horizon
).transpose(1,0,-1)).to(self.obs.device).long()
self.b_idxs = self.b_idxs_obs.to(self.device)
self.b_idxs_flat = self.b_idxs.reshape(
self.num_minibatches, self.minibatch_size)
self.sort_keys = []
return idxs
def flatten_batch(self, advantages_np):
advantages = torch.as_tensor(advantages_np).to(self.device)
b_idxs, b_flat = self.b_idxs, self.b_idxs_flat
self.b_actions = self.actions.to(self.device, non_blocking=True)
self.b_logprobs = self.logprobs.to(self.device, non_blocking=True)
self.b_dones = self.dones.to(self.device, non_blocking=True)
self.b_values = self.values.to(self.device, non_blocking=True)
self.b_advantages = advantages.reshape(self.minibatch_rows,
self.num_minibatches, self.bptt_horizon).transpose(0, 1).reshape(
self.num_minibatches, self.minibatch_size)
self.returns_np = advantages_np + self.values_np
self.b_obs = self.obs[self.b_idxs_obs]
self.b_actions = self.b_actions[b_idxs].contiguous()
self.b_logprobs = self.b_logprobs[b_idxs]
self.b_dones = self.b_dones[b_idxs]
self.b_values = self.b_values[b_flat]
self.b_returns = self.b_advantages + self.b_values
class Utilization(Thread):
def __init__(self, delay=1, maxlen=20):
super().__init__()
self.cpu_mem = deque(maxlen=maxlen)
self.cpu_util = deque(maxlen=maxlen)
self.gpu_util = deque(maxlen=maxlen)
self.gpu_mem = deque(maxlen=maxlen)
self.delay = delay
self.stopped = False
self.start()
def run(self):
while not self.stopped:
self.cpu_util.append(100*psutil.cpu_percent())
mem = psutil.virtual_memory()
self.cpu_mem.append(100*mem.active/mem.total)
if torch.cuda.is_available():
self.gpu_util.append(torch.cuda.utilization())
free, total = torch.cuda.mem_get_info()
self.gpu_mem.append(100*free/total)
else:
self.gpu_util.append(0)
self.gpu_mem.append(0)
time.sleep(self.delay)
def stop(self):
self.stopped = True
def save_checkpoint(data):
config = data.config
path = os.path.join(config.data_dir, config.exp_id)
if not os.path.exists(path):
os.makedirs(path)
model_name = f'model_{data.epoch:06d}.pt'
model_path = os.path.join(path, model_name)
if os.path.exists(model_path):
return model_path
torch.save(data.uncompiled_policy, model_path)
state = {
'optimizer_state_dict': data.optimizer.state_dict(),
'global_step': data.global_step,
'agent_step': data.global_step,
'update': data.epoch,
'model_name': model_name,
'exp_id': config.exp_id,
}
state_path = os.path.join(path, 'trainer_state.pt')
torch.save(state, state_path + '.tmp')
os.rename(state_path + '.tmp', state_path)
return model_path
def try_load_checkpoint(data):
config = data.config
path = os.path.join(config.data_dir, config.exp_id)
if not os.path.exists(path):
print('No checkpoints found. Assuming new experiment')
return
trainer_path = os.path.join(path, 'trainer_state.pt')
resume_state = torch.load(trainer_path)
model_path = os.path.join(path, resume_state['model_name'])
data.policy.uncompiled.load_state_dict(model_path, map_location=config.device)
data.optimizer.load_state_dict(resume_state['optimizer_state_dict'])
print(f'Loaded checkpoint {resume_state["model_name"]}')
def count_params(policy):
return sum(p.numel() for p in policy.parameters() if p.requires_grad)
def rollout(env_creator, env_kwargs, policy_cls, rnn_cls, agent_creator, agent_kwargs,
backend, render_mode='auto', model_path=None, device='cuda'):
if render_mode != 'auto':
env_kwargs['render_mode'] = render_mode
# We are just using Serial vecenv to give a consistent
# single-agent/multi-agent API for evaluation
env = pufferlib.vector.make(env_creator, env_kwargs=env_kwargs, backend=backend)
if model_path is None:
agent = agent_creator(env, policy_cls, rnn_cls, agent_kwargs).to(device)
else:
agent = torch.load(model_path, map_location=device)
ob, info = env.reset()
driver = env.driver_env
os.system('clear')
state = None
frames = []
tick = 0
while tick <= 2000:
if tick % 1 == 0:
render = driver.render()
if driver.render_mode == 'ansi':
print('\033[0;0H' + render + '\n')
time.sleep(0.05)
elif driver.render_mode == 'rgb_array':
frames.append(render)
import cv2
render = cv2.cvtColor(render, cv2.COLOR_RGB2BGR)
cv2.imshow('frame', render)
cv2.waitKey(1)
time.sleep(1/24)
elif driver.render_mode in ('human', 'raylib') and render is not None:
frames.append(render)
with torch.no_grad():
ob = torch.as_tensor(ob).to(device)
if hasattr(agent, 'lstm'):
action, _, _, _, state = agent(ob, state)
else:
action, _, _, _ = agent(ob)
action = action.cpu().numpy().reshape(env.action_space.shape)
ob, reward = env.step(action)[:2]
reward = reward.mean()
if tick % 128 == 0:
print(f'Reward: {reward:.4f}, Tick: {tick}')
tick += 1
# Save frames as gif
if frames:
import imageio
os.makedirs('../docker', exist_ok=True) or imageio.mimsave('../docker/eval.gif', frames, fps=15, loop=0)
def seed_everything(seed, torch_deterministic):
random.seed(seed)
np.random.seed(seed)
if seed is not None:
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = torch_deterministic
ROUND_OPEN = rich.box.Box(
"╭──╮\n"
"│ │\n"
"│ │\n"
"│ │\n"
"│ │\n"
"│ │\n"
"│ │\n"
"╰──╯\n"
)
c1 = '[bright_cyan]'
c2 = '[white]'
c3 = '[cyan]'
b1 = '[bright_cyan]'
b2 = '[bright_white]'
def abbreviate(num):
if num < 1e3:
return f'{b2}{num:.0f}'
elif num < 1e6:
return f'{b2}{num/1e3:.1f}{c2}k'
elif num < 1e9:
return f'{b2}{num/1e6:.1f}{c2}m'
elif num < 1e12:
return f'{b2}{num/1e9:.1f}{c2}b'
else:
return f'{b2}{num/1e12:.1f}{c2}t'
def duration(seconds):
seconds = int(seconds)
h = seconds // 3600
m = (seconds % 3600) // 60
s = seconds % 60
return f"{b2}{h}{c2}h {b2}{m}{c2}m {b2}{s}{c2}s" if h else f"{b2}{m}{c2}m {b2}{s}{c2}s" if m else f"{b2}{s}{c2}s"
def fmt_perf(name, time, uptime):
percent = 0 if uptime == 0 else int(100*time/uptime - 1e-5)
return f'{c1}{name}', duration(time), f'{b2}{percent:2d}%'
# TODO: Add env name to print_dashboard
def print_dashboard(env_name, utilization, global_step, epoch,
profile, losses, stats, msg, clear=False, max_stats=[0]):
console = Console()
if clear:
console.clear()
dashboard = Table(box=ROUND_OPEN, expand=True,
show_header=False, border_style='bright_cyan')
table = Table(box=None, expand=True, show_header=False)
dashboard.add_row(table)
cpu_percent = np.mean(utilization.cpu_util)
dram_percent = np.mean(utilization.cpu_mem)
gpu_percent = np.mean(utilization.gpu_util)
vram_percent = np.mean(utilization.gpu_mem)
table.add_column(justify="left", width=30)
table.add_column(justify="center", width=12)
table.add_column(justify="center", width=12)
table.add_column(justify="center", width=13)
table.add_column(justify="right", width=13)
table.add_row(
f':blowfish: {c1}PufferLib {b2}2.0.0',
f'{c1}CPU: {c3}{cpu_percent:.1f}%',
f'{c1}GPU: {c3}{gpu_percent:.1f}%',
f'{c1}DRAM: {c3}{dram_percent:.1f}%',
f'{c1}VRAM: {c3}{vram_percent:.1f}%',
)
s = Table(box=None, expand=True)
s.add_column(f"{c1}Summary", justify='left', vertical='top', width=16)
s.add_column(f"{c1}Value", justify='right', vertical='top', width=8)
s.add_row(f'{c2}Environment', f'{b2}{env_name}')
s.add_row(f'{c2}Agent Steps', abbreviate(global_step))
s.add_row(f'{c2}SPS', abbreviate(profile.SPS))
s.add_row(f'{c2}Epoch', abbreviate(epoch))
s.add_row(f'{c2}Uptime', duration(profile.uptime))
s.add_row(f'{c2}Remaining', duration(profile.remaining))
p = Table(box=None, expand=True, show_header=False)
p.add_column(f"{c1}Performance", justify="left", width=10)
p.add_column(f"{c1}Time", justify="right", width=8)
p.add_column(f"{c1}%", justify="right", width=4)
p.add_row(*fmt_perf('Evaluate', profile.eval_time, profile.uptime))
p.add_row(*fmt_perf(' Forward', profile.eval_forward_time, profile.uptime))
p.add_row(*fmt_perf(' Env', profile.env_time, profile.uptime))
p.add_row(*fmt_perf(' Misc', profile.eval_misc_time, profile.uptime))
p.add_row(*fmt_perf('Train', profile.train_time, profile.uptime))
p.add_row(*fmt_perf(' Forward', profile.train_forward_time, profile.uptime))
p.add_row(*fmt_perf(' Learn', profile.learn_time, profile.uptime))
p.add_row(*fmt_perf(' Misc', profile.train_misc_time, profile.uptime))
l = Table(box=None, expand=True, )
l.add_column(f'{c1}Losses', justify="left", width=16)
l.add_column(f'{c1}Value', justify="right", width=8)
for metric, value in losses.items():
l.add_row(f'{c2}{metric}', f'{b2}{value:.3f}')
monitor = Table(box=None, expand=True, pad_edge=False)
monitor.add_row(s, p, l)
dashboard.add_row(monitor)
table = Table(box=None, expand=True, pad_edge=False)
dashboard.add_row(table)
left = Table(box=None, expand=True)
right = Table(box=None, expand=True)
table.add_row(left, right)
left.add_column(f"{c1}User Stats", justify="left", width=20)
left.add_column(f"{c1}Value", justify="right", width=10)
right.add_column(f"{c1}User Stats", justify="left", width=20)
right.add_column(f"{c1}Value", justify="right", width=10)
i = 0
for metric, value in stats.items():
try: # Discard non-numeric values
int(value)
except:
continue
u = left if i % 2 == 0 else right
u.add_row(f'{c2}{metric}', f'{b2}{value:.3f}')
i += 1
if i == 30:
break
for i in range(max_stats[0] - i):
u = left if i % 2 == 0 else right
u.add_row('', '')
max_stats[0] = max(max_stats[0], i)
table = Table(box=None, expand=True, pad_edge=False)
dashboard.add_row(table)
table.add_row(f' {c1}Message: {c2}{msg}')
with console.capture() as capture:
console.print(dashboard)
print('\033[0;0H' + capture.get())