forked from facebookresearch/optimizers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_utils.py
616 lines (551 loc) · 19 KB
/
trainer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree.
"""
import argparse
import enum
import logging
import random
from abc import ABC, abstractmethod
import numpy as np
import torch
import torch.distributed as dist
from distributed_shampoo import (
AdaGradGraftingConfig,
AdamGraftingConfig,
CommunicationDType,
CoupledHigherOrderConfig,
CoupledNewtonConfig,
DefaultEigenvalueCorrectedShampooConfig,
DefaultShampooConfig,
DefaultSOAPConfig,
DistributedConfig,
DistributedShampoo,
GraftingConfig,
PreconditionerConfig,
RMSpropGraftingConfig,
SGDGraftingConfig,
ShampooPreconditionerConfig,
)
from distributed_shampoo.examples.convnet import ConvNet
from torch import nn
from torchvision import datasets, transforms # type: ignore[import-untyped]
logger = logging.getLogger(__name__)
# create default device
default_device = torch.device("cpu")
###### ENUM CLASSES ######
class DType(enum.Enum):
BF16 = torch.bfloat16
FP16 = torch.float16
FP32 = torch.float32
FP64 = torch.float64
class OptimizerType(enum.Enum):
SGD = 0
ADAM = 1
DISTRIBUTED_SHAMPOO = 2
class GraftingType(enum.Enum):
NONE = 0
SGD = 1
ADAGRAD = 2
RMSPROP = 3
ADAM = 4
class PreconditionerComputationType(enum.Enum):
EIGEN_ROOT_INV = 0
COUPLED_NEWTON_ROOT_INV = 1
COUPLED_HIGHER_ORDER_ROOT_INV = 2
EIGH_EIGENVALUE_CORRECTION = 3
QR_EIGENVALUE_CORRECTION = 4
###### ARGPARSER ######
def enum_type_parse(s: str, enum_type: enum.Enum):
try:
return enum_type[s] # type: ignore[index]
except KeyError:
raise argparse.ArgumentTypeError(
"Use one of {}".format(", ".join([t.name for t in enum_type])) # type: ignore[attr-defined]
)
class Parser:
@staticmethod
def get_args():
parser = argparse.ArgumentParser(description="Arguments for Shampoo run.")
# Arguments for training script.
parser.add_argument(
"--optimizer-type",
type=lambda t: enum_type_parse(t, OptimizerType),
help="Optimizer type.",
)
parser.add_argument("--batch-size", type=int, default=128, help="Batch size.")
parser.add_argument("--epochs", type=int, default=1, help="Epochs.")
parser.add_argument(
"--window-size", type=int, default=1, help="Window size for tracking loss."
)
parser.add_argument("--seed", type=int, default=2022, help="Seed.")
# Arguments for optimizer.
parser.add_argument("--lr", type=float, default=1e-3, help="Learning rate.")
parser.add_argument(
"--beta1", type=float, default=0.9, help="Beta1 for gradient filtering."
)
parser.add_argument(
"--beta2",
type=float,
default=0.999,
help="Beta2 for exponential moving average of second moment.",
)
parser.add_argument(
"--beta3",
type=float,
default=-1.0,
help="Beta3 for taking the exponential moving average of the gradient only at the current iteration.",
)
parser.add_argument(
"--epsilon", type=float, default=1e-12, help="Epsilon for Adam and Shampoo."
)
parser.add_argument(
"--weight-decay",
type=float,
default=0.0,
help="Weight decay.",
)
# Arguments for Shampoo.
parser.add_argument(
"--momentum",
type=float,
default=0.0,
help="Momentum parameter for SGD and Shampoo.",
)
parser.add_argument(
"--dampening",
type=float,
default=0.0,
help="Dampening parameter for SGD and Shampoo in momentum.",
)
parser.add_argument(
"--max-preconditioner-dim",
type=int,
default=1024,
help="Max preconditioner dimension for Shampoo.",
)
parser.add_argument(
"--precondition-frequency",
type=int,
default=1,
help="Precondition frequency for Shampoo.",
)
parser.add_argument(
"--start-preconditioning-step",
type=int,
default=-1,
help="Start preconditioning step for Shampoo.",
)
parser.add_argument(
"--inv-root-override",
type=int,
default=0,
help="Inverse root override for Shampoo root inverse.",
)
parser.add_argument(
"--exponent-multiplier",
type=float,
default=1.0,
help="Exponent multiplier for Shampoo root inverse.",
)
parser.add_argument(
"--use-nesterov",
action="store_true",
help="Use Nesterov momentum for SGD and Shampoo.",
)
parser.add_argument(
"--use-bias-correction",
action="store_true",
help="Use bias correction for Shampoo.",
)
parser.add_argument(
"--use-decoupled-weight-decay",
action="store_true",
help="Use decoupled weight decay for Adam and Shampoo.",
)
parser.add_argument(
"--use-merge-dims",
action="store_true",
help="Use merge dims for Shampoo.",
)
parser.add_argument(
"--preconditioner-computation-type",
type=lambda t: enum_type_parse(t, PreconditionerComputationType),
default=PreconditionerComputationType.EIGEN_ROOT_INV,
help="Preconditioner computation method for Shampoo.",
)
# Arguments for grafting.
parser.add_argument(
"--grafting-type",
type=lambda t: enum_type_parse(t, GraftingType),
default=GraftingType.SGD,
help="Grafted method for Shampoo.",
)
parser.add_argument(
"--grafting-epsilon",
type=float,
default=1e-8,
help="Grafting epsilon parameter for Shampoo.",
)
parser.add_argument(
"--grafting-beta2",
type=float,
default=0.999,
help="Grafting beta2 parameter for Shampoo.",
)
# Arguments for mixed-precision.
parser.add_argument(
"--preconditioner-dtype",
type=lambda t: enum_type_parse(t, DType),
default=DType.FP32,
help="Preconditioner dtype for Shampoo.",
)
# Arguments for DDP Shampoo.
parser.add_argument(
"--communication-dtype",
type=lambda t: enum_type_parse(t, CommunicationDType),
default=CommunicationDType.FP32,
help="Communication dtype for Shampoo.",
)
parser.add_argument(
"--num-trainers-per-group",
type=int,
default=-1,
help="Number of GPUs per distributed process group.",
)
parser.add_argument(
"--communicate-params",
action="store_true",
help="Communicate parameters for Shampoo.",
)
# Arguments for Distributed Training.
parser.add_argument(
"--local-batch-size", type=int, default=128, help="Local batch size."
)
parser.add_argument(
"--num-trainers", type=int, default=2, help="Number of trainers."
)
parser.add_argument(
"--backend",
type=str,
default="nccl",
choices=["nccl", "gloo"],
help="Distributed backend.",
)
parser.add_argument(
"--data-path",
type=str,
default="./data",
help="Path to CIFAR-10 dataset.",
)
parser.add_argument(
"--use-distributed-checkpoint",
action="store_true",
help="Toggle distributed checkpoint testing.",
)
parser.add_argument(
"--checkpoint-dir",
type=str,
default="./checkpoints",
help="Directory to save checkpoints and logs.",
)
return parser.parse_args()
###### METRICS CLASSES ######
class Metrics(ABC):
@abstractmethod
def log(self): ...
@abstractmethod
def reset(self): ...
@abstractmethod
def update(self, loss: torch.Tensor): ...
class LossMetrics(Metrics):
def __init__(
self,
window_size: int = 100,
device: torch.device = default_device,
world_size: int = 0,
):
super().__init__()
self._world_size = world_size
self._window_size = window_size
self._device = device
self._epoch = 0
self._iteration = 0
self._window_losses: list[torch.Tensor] = []
self._window_loss = torch.tensor(0.0, device=device)
self._accumulated_loss = torch.tensor(0.0, device=device)
self._lifetime_loss = torch.tensor(0.0, device=device)
if self._world_size > 1:
self._global_window_loss = torch.tensor(0.0, device=device)
self._global_lifetime_loss = torch.tensor(0.0, device=device)
def reset(self):
self._epoch = 0
self._iteration = 0
self._window_losses = []
self._window_loss = torch.tensor(0.0, device=self._device)
self._accumulated_loss = torch.tensor(0.0, device=self._device)
self._lifetime_loss = torch.tensor(0.0, device=self._device)
def update(self, loss: torch.Tensor):
self._iteration += 1
self._window_losses.append(loss)
if len(self._window_losses) > self._window_size:
self._window_losses.pop(0)
self._window_loss = torch.mean(torch.stack(self._window_losses))
self._accumulated_loss += loss
self._lifetime_loss = self._accumulated_loss / self._iteration
def log(self):
logger.info(
f"Epoch: {self._epoch} | Iteration: {self._iteration} | Local Lifetime Loss: {self._lifetime_loss} | Local Window Loss: {self._window_loss}"
)
def update_global_metrics(self):
if dist.is_initialized() and self._world_size > 1:
self._global_window_loss = self._window_loss / self._world_size
self._global_lifetime_loss = self._lifetime_loss / self._world_size
dist.all_reduce(self._global_window_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(self._global_lifetime_loss, op=dist.ReduceOp.SUM)
else:
pass
def log_global_metrics(self):
if self._world_size > 1:
logger.info(
f"Epoch: {self._epoch} | Iteration: {self._iteration} | Global Lifetime Loss: {self._global_lifetime_loss} | Global Window Loss: {self._global_window_loss}"
)
else:
pass
###### OPTIMIZER INSTANTIATION ######
def instantiate_optimizer(
optimizer_type: OptimizerType,
model: nn.Module,
lr: float,
betas: tuple[float, float],
beta3: float,
epsilon: float,
momentum: float,
dampening: float,
weight_decay: float,
max_preconditioner_dim: int,
precondition_frequency: int,
start_preconditioning_step: int,
inv_root_override: int,
exponent_multiplier: float,
use_nesterov: bool,
use_bias_correction: bool,
use_decoupled_weight_decay: bool,
grafting_type: GraftingType,
grafting_beta2: float,
grafting_epsilon: float,
use_merge_dims: bool,
distributed_config: DistributedConfig | None,
preconditioner_dtype: DType,
preconditioner_computation_type: PreconditionerComputationType,
) -> torch.optim.Optimizer:
if optimizer_type == OptimizerType.SGD:
optimizer = torch.optim.SGD(
model.parameters(),
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=use_nesterov,
)
elif optimizer_type == OptimizerType.ADAM:
if use_decoupled_weight_decay:
optimizer = torch.optim.AdamW(
model.parameters(),
lr=lr,
betas=betas,
eps=epsilon,
weight_decay=weight_decay,
) # type: ignore[assignment]
else:
optimizer = torch.optim.Adam(
model.parameters(),
lr=lr,
betas=betas,
eps=epsilon,
weight_decay=weight_decay,
) # type: ignore[assignment]
elif optimizer_type == OptimizerType.DISTRIBUTED_SHAMPOO:
optimizer = DistributedShampoo(
model.parameters(),
lr=lr,
betas=betas,
beta3=beta3,
epsilon=epsilon,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
max_preconditioner_dim=max_preconditioner_dim,
precondition_frequency=precondition_frequency,
start_preconditioning_step=start_preconditioning_step,
inv_root_override=inv_root_override,
exponent_multiplier=exponent_multiplier,
use_nesterov=use_nesterov,
use_bias_correction=use_bias_correction,
use_decoupled_weight_decay=use_decoupled_weight_decay,
grafting_config=instantiate_grafting_config(
grafting_type, grafting_beta2, grafting_epsilon
),
use_merge_dims=use_merge_dims,
distributed_config=distributed_config,
preconditioner_dtype=preconditioner_dtype.value,
preconditioner_config=instantiate_preconditioner_config(
preconditioner_computation_type
),
) # type: ignore[assignment]
else:
raise ValueError(f"Invalid OptimizerType {optimizer_type}!")
return optimizer
def instantiate_grafting_config(
grafting_type: GraftingType,
grafting_beta2: float,
grafting_epsilon: float,
) -> GraftingConfig | None:
if grafting_type == GraftingType.NONE:
return None
elif grafting_type == GraftingType.ADAGRAD:
return AdaGradGraftingConfig(
epsilon=grafting_epsilon,
)
elif grafting_type == GraftingType.ADAM:
return AdamGraftingConfig(
beta2=grafting_beta2,
epsilon=grafting_epsilon,
)
elif grafting_type == GraftingType.RMSPROP:
return RMSpropGraftingConfig(
beta2=grafting_beta2,
epsilon=grafting_epsilon,
)
elif grafting_type == GraftingType.SGD:
return SGDGraftingConfig( # type: ignore[abstract]
beta2=grafting_beta2,
epsilon=grafting_epsilon,
)
else:
raise ValueError(f"Invalid GraftingType {grafting_type}!")
def instantiate_preconditioner_config(
preconditioner_computation_type: PreconditionerComputationType,
) -> PreconditionerConfig:
if preconditioner_computation_type == PreconditionerComputationType.EIGEN_ROOT_INV:
return DefaultShampooConfig
elif (
preconditioner_computation_type
== PreconditionerComputationType.COUPLED_NEWTON_ROOT_INV
):
return ShampooPreconditionerConfig(
amortized_computation_config=CoupledNewtonConfig(),
)
elif (
preconditioner_computation_type
== PreconditionerComputationType.COUPLED_HIGHER_ORDER_ROOT_INV
):
return ShampooPreconditionerConfig(
amortized_computation_config=CoupledHigherOrderConfig(),
)
elif (
preconditioner_computation_type
== PreconditionerComputationType.EIGH_EIGENVALUE_CORRECTION
):
return DefaultEigenvalueCorrectedShampooConfig
elif (
preconditioner_computation_type
== PreconditionerComputationType.QR_EIGENVALUE_CORRECTION
):
return DefaultSOAPConfig
else:
raise ValueError(
f"Invalid PreconditionerComputationType {preconditioner_computation_type}!"
)
###### DATA LOADER ######
def get_data_loader_and_sampler(
data_path: str, world_size: int, rank: int, local_batch_size: int
) -> tuple[
torch.utils.data.DataLoader, torch.utils.data.distributed.DistributedSampler
]:
# instantiate data loader
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
dataset = datasets.CIFAR10(
data_path, train=True, download=True, transform=transform
)
sampler: torch.utils.data.distributed.DistributedSampler = (
torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=True
)
)
return (
torch.utils.data.DataLoader(
dataset,
batch_size=local_batch_size,
sampler=sampler,
num_workers=2,
),
sampler,
)
###### SET UP ######
def set_seed(seed: int):
# set seed for reproducibility
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.use_deterministic_algorithms(True)
def setup_distribution(
backend: str, world_rank: int, world_size: int, local_rank: int
) -> torch.device:
# initialize distributed process group
dist.init_process_group(
backend=backend,
init_method="env://",
rank=world_rank,
world_size=world_size,
)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu", local_rank)
if use_cuda:
# Necessary to ensure DTensor's local tensors are instantiated
# on the correct device.
#
# TODO: DTensor zeros instantiation needs to be fixed.
torch.cuda.set_device(local_rank)
return device
def get_model_and_loss_fn(device: torch.device) -> tuple[nn.Module, nn.Module]:
# instantiate model and loss function
model = ConvNet(32, 32, 3).to(device)
loss_fn = nn.CrossEntropyLoss()
return model, loss_fn
###### TRAIN LOOP ######
def train_model(
model: nn.Module,
world_size: int,
loss_function: nn.Module,
sampler: torch.utils.data.Sampler,
data_loader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
device: torch.device,
epochs: int = 1,
window_size: int = 100,
local_rank: int = 0,
):
# initialize metrics
metrics = LossMetrics(window_size=window_size, device=device, world_size=world_size)
# main training loop
for epoch in range(epochs):
metrics._epoch = epoch
sampler.set_epoch(epoch) # type: ignore[attr-defined]
for inputs, labels in data_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
output = model(inputs)
loss = loss_function(output, labels)
loss.backward()
optimizer.step()
metrics.update(loss)
metrics.log()
metrics.update_global_metrics()
if local_rank == 0:
metrics.log_global_metrics()
return metrics._lifetime_loss, metrics._window_loss, metrics._iteration