-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmixer.py
118 lines (85 loc) · 3.77 KB
/
mixer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#
# Copyright 2018 Picovoice Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import soundfile
from dataset import Dataset
from engine import Engine
_random = np.random.RandomState(seed=778)
def _pcm_energy(pcm):
frame_length = Engine.frame_length()
num_frames = pcm.size // frame_length
pcm_frames = pcm[:(num_frames * frame_length)].reshape((num_frames, frame_length))
frames_power = (pcm_frames ** 2).sum(axis=1)
return frames_power.max()
def _speech_scale(speech, noise, snr_db):
assert speech.shape[0] == noise.shape[0]
speech_energy = _pcm_energy(speech)
if speech_energy == 0:
return 0
return np.sqrt((_pcm_energy(noise) * (10 ** (snr_db / 10))) / speech_energy)
def _max_abs(x):
return max(np.max(x), np.abs(np.min(x)))
def _mix_noise(speech_parts, noise_dataset, snr_db):
speech_length = sum(len(x) for x in speech_parts)
parts = list()
while sum(x.size for x in parts) < speech_length:
x = noise_dataset.random(dtype=np.float32)
parts.append(x / _max_abs(x))
res = np.concatenate(parts)[:speech_length]
start_index = 0
for speech_part in speech_parts:
end_index = start_index + len(speech_part)
res[start_index:end_index] += speech_part * _speech_scale(speech_part, res[start_index:end_index], snr_db)
start_index = end_index
return res
def _assemble_background(background_dataset, length_samples, background_probability=0.2):
parts = list()
while sum(x.size for x in parts) < length_samples:
x = background_dataset.random(dtype=np.float32)
if _random.uniform() < background_probability:
parts.append(x / _max_abs(x))
else:
parts.append(np.zeros((x.size,), dtype=np.float32))
return parts
def _assemble_speech(keyword_dataset, background_dataset, length_hour):
num_keywords = keyword_dataset.size()
keyword_indices = _random.permutation(np.arange(num_keywords))
background_length_samples = (length_hour * 3600 * Dataset.sample_rate()) // (num_keywords + 1)
parts = _assemble_background(background_dataset, background_length_samples)
keyword_times_sec = list()
for keyword_index in keyword_indices:
keyword_part = keyword_dataset.get(keyword_index, dtype=np.float32)
start_time_sec = sum(x.size for x in parts) / Dataset.sample_rate()
end_time_sec = start_time_sec + (keyword_part.size / Dataset.sample_rate()) + 0.5
keyword_times_sec.append((start_time_sec, end_time_sec))
parts.append(keyword_part / _max_abs(keyword_part))
parts.extend(_assemble_background(background_dataset, background_length_samples))
return parts, keyword_times_sec
def create_test_files(
speech_path,
label_path,
keyword_dataset,
background_dataset,
noise_dataset,
length_hour=24,
snr_db=10):
speech_parts, keyword_times_sec = _assemble_speech(keyword_dataset, background_dataset, length_hour)
speech = _mix_noise(speech_parts, noise_dataset, snr_db)
speech /= _max_abs(speech)
soundfile.write(speech_path, speech, samplerate=Dataset.sample_rate())
with open(label_path, 'w') as f:
for start_sec, end_sec in keyword_times_sec:
f.write('%.2f, %.2f\n' % (start_sec, end_sec))