-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathmerge.py
56 lines (52 loc) · 2.27 KB
/
merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
import torch
import sys
import os
import platform
from utils.tools import *
from transformers import AutoModelForCausalLM
import peft
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser(description='Process some llm info.')
parser.add_argument('--model_type', type=str, default="chatglm", choices=AVAILABLE_MODEL,
help='the base structure (not the model) used for model or fine-tuned model')
parser.add_argument('--size', type=str, default="7b",
help='the type for base model or the absolute path for fine-tuned model')
parser.add_argument('--lora_dir', type=str, default="none",
help='the path for fine-tuned lora params, none when not in use')
parser.add_argument('--merged_dir', type=str, default="saved_models/tmp")
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed serving')
args = parser.parse_args()
# load model & tokenizer
model, lora_model, lora_type, model_class = get_lora_model(args)
# merge weights
if lora_type == 'q_v_proj':
first_weight = model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()
lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight
assert torch.allclose(first_weight_old, first_weight)
if peft.__version__ > '0.2.0':
lora_model = lora_model.merge_and_unload()
else:
for layer in lora_model.base_model.model.model.layers:
layer.self_attn.q_proj.merge_weights = True
layer.self_attn.v_proj.merge_weights = True
lora_model.train(False)
assert not torch.allclose(first_weight_old, first_weight)
lora_model_sd = lora_model.state_dict()
# print(lora_model_sd)
deloreanized_sd = {
k.replace("base_model.model.", ""): v
for k, v in lora_model_sd.items()
if "lora" not in k
}
if args.model_type in ['llama']:
model_class.model.save_pretrained(model, args.merged_dir, state_dict=deloreanized_sd, max_shard_size="400MB")
else:
model.save_pretrained(args.merged_dir)
elif lora_type == 'query_key_value':
lora_model = lora_model.merge_and_unload()
lora_model.train(False)
model.save_pretrained(args.merged_dir)
else:
print("lora info error! check path")