-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
73 lines (57 loc) · 1.47 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
JOINT = {
'nyu':14,
'dexycb':21,
'ho3d':21
}
STEP = {
'nyu': 25,
'dexycb':10,
'ho3d':25
}
EPOCH = {
'nyu': 30,
'dexycb':15,
'ho3d':30
}
CUBE = {
'nyu': [250, 250, 250],
'dexycb':[250, 250, 250],
'ho3d': [280, 280, 280],
}
class Config(object):
phase = 'train'
root_dir = '' # set your path
dataset = 'dexycb'# ['nyu', 'dexycb', 'ho3d']
ho3d_version = 'v3'
dexycb_setup = 's0' # ['s0', 's1', 's2', 's3]
model_save = ''
add_info = ''
save_dir = './'
net = 'PointNet' # ['IPNet-convnext-tiny', 'IPNet_MANO-convnext-tiny', 'PointMLP', 'PointNet', 'mix-Point2', 'mix-PointMLP']
load_model = ''
finetune_dir = ''
gpu_id = 0
joint_num = JOINT[dataset]
batch_size = 32
input_size = 128
cube_size = CUBE[dataset]
center_type = 'refine' # ['joint_mean', 'refine']
loss_type = 'L1Loss'
augment_para = [10, 0.2, 180]
lr = 0.001
max_epoch = EPOCH[dataset]
step_size = STEP[dataset]
opt = 'adamw'
scheduler = 'step'
downsample = 2
awr = True
coord_weight = 100
deconv_weight = 1
feature_type = ['weight_offset']
feature_para = [0.8]
# stage_type = [1] # Pixel-wise Regression (ResNet ConvNeXt)
stage_type = [3] # Point-wise Regression (PointMLP PointNet)
# stage_type = [1, 3] # 1-stage IPNet
# stage_type = [1, 3, 3, 3] # 3-stage IPNet
# stage_type = [1, 3, 5, 3, 5, 3, 5] # 3-stage IPNet_MANO
opt = Config()