forked from Elody-07/AWR-Adaptive-Weighting-Regression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
116 lines (93 loc) · 4.83 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import os.path as osp
from tqdm import tqdm
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torchnet import meter
from model.resnet_deconv import get_deconv_net
from model.hourglass import PoseNet
from model.loss import My_SmoothL1Loss
from dataloader.nyu_loader import NYU
from util.feature_tool import FeatureModule
from util.eval_tool import EvalUtil
from util.vis_tool import VisualUtil
from config import opt
class Trainer(object):
def __init__(self, config):
torch.cuda.set_device(config.gpu_id)
cudnn.benchmark = True
self.config = config
self.data_dir = osp.join(self.config.data_dir, self.config.dataset)
# output dirs for model, log and result figure saving
self.work_dir = osp.join(self.config.output_dir, self.config.dataset, 'checkpoint')
self.result_dir = osp.join(self.config.output_dir, self.config.dataset, 'results' )
if not osp.exists(self.work_dir):
os.makedirs(self.work_dir)
if not osp.exists(self.result_dir):
os.makedirs(self.result_dir)
if 'resnet' in self.config.net:
net_layer = int(self.config.net.split('_')[1])
self.net = get_deconv_net(net_layer, self.config.jt_num, self.config.downsample)
elif 'hourglass' in self.config.net:
self.stacks = int(self.config.net.split('_')[1])
self.net = PoseNet(self.config.net, self.config.jt_num)
self.net = self.net.cuda()
if self.config.load_model :
print('loading model from %s' % self.config.load_model)
pth = torch.load(self.config.load_model)
self.net.load_state_dict(pth['model'])
print(pth['best_records'])
self.net = self.net.cuda()
if self.config.dataset == 'nyu':
self.testData = NYU(self.data_dir, 'test', img_size=self.config.img_size, cube=self.config.cube)
self.criterion = My_SmoothL1Loss().cuda()
self.FM = FeatureModule()
@torch.no_grad()
def test(self, epoch):
self.testLoader = DataLoader(self.testData, batch_size=self.config.batch_size, shuffle=False, num_workers=self.config.num_workers)
self.net.eval()
eval_tool = EvalUtil(self.testData.img_size, self.testData.paras, self.testData.flip, self.testData.jt_num)
loss_meter = meter.AverageValueMeter()
for ii, (img, jt_xyz_gt, jt_uvd_gt, center_xyz, M, cube) in tqdm(enumerate(self.testLoader)):
input = img.cuda()
loss = 0
self.ft_sz = int(self.config.img_size / self.config.downsample)
jt_uvd_gt = jt_uvd_gt.cuda()
offset_gt = self.FM.joint2offset(jt_uvd_gt, input, self.config.kernel_size, self.ft_sz)
if 'hourglass' in self.config.net:
for stage_idx in range(self.stacks):
offset_pred = self.net(input)[stage_idx]
jt_uvd_pred = self.FM.offset2joint_softmax(offset_pred, input, self.config.kernel_size)
loss_coord = self.config.coord_weight * self.criterion(jt_uvd_pred, jt_uvd_gt)
loss_offset = self.config.dense_weight * self.criterion(offset_pred, offset_gt)
loss += (loss_coord + loss_offset)
else:
offset_pred = self.net(input)
jt_uvd_pred = self.FM.offset2joint_softmax(offset_pred, input, self.config.kernel_size)
loss_coord = self.config.coord_weight * self.criterion(jt_uvd_pred, jt_uvd_gt)
loss_offset = self.config.dense_weight * self.criterion(offset_pred, offset_gt)
loss += (loss_coord + loss_offset)
loss_meter.add(loss.item())
jt_uvd_gt = jt_uvd_gt.detach().cpu().numpy()
jt_xyz_gt = jt_xyz_gt.detach().cpu().numpy()
center_xyz = center_xyz.detach().cpu().numpy()
M = M.detach().numpy()
cube = cube.detach().numpy()
jt_uvd_pred = jt_uvd_pred.detach().cpu().numpy()
for i in range(jt_uvd_pred.shape[0]):
eval_tool.feed(jt_uvd_pred[i],jt_xyz_gt[i],center_xyz[i],M[i],cube[i])
mpe, mid, auc, pck, thresh = eval_tool.get_measures()
print("results: [epoch %d][MPE %.3f][AUC %.3f]" % (epoch, mpe, auc))
if epoch == -1:
eval_tool.plot_pck(osp.join(self.result_dir, 'test_pck_epoch%d.png' % epoch), pck, thresh)
txt_file = osp.join(self.work_dir, 'test_%.3f.txt' % mpe)
jt_uvd = np.array(eval_tool.jt_uvd_pred, dtype = np.float32)
if not txt_file == None:
np.savetxt(txt_file, jt_uvd.reshape([jt_uvd.shape[0], self.config.jt_num * 3]), fmt='%.3f')
return mpe
if __name__=='__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
trainer = Trainer(opt)
trainer.test(-1)