-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
159 lines (134 loc) · 3.77 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sympy import *
from scipy.optimize import fsolve
from scipy.special import beta
# pretreatment
# bikes = pd.read_csv('C:\\Users\\Think\\Desktop\\6200\\challenge Q\\bikes.csv', header=7)
bikes = pd.read_csv('bikes.csv', header=7)
df0 = bikes.drop(columns=["Female", "No", "No.1", "No.2"])
df1 = df0.fillna(0)
df1.columns = ['datetime', 'gender', 'had_helmet', 'had_passenger', 'on_sidewalk']
# problem 1
a = '7:00'
m = 0
for i in df1['datetime']:
if i == 0:
df1.iloc[m, 0] = "2010-9-24 " + a
else:
a = i
df1.iloc[m, 0] = "2010-9-24 " + i
m += 1
df1["gender"].replace("X", 'Male', inplace=True)
df1["gender"].replace(0, 'Female', inplace=True)
df1.replace(0, "No", inplace=True)
df1.replace("X", "Yes", inplace=True)
df1["datetime"] = pd.to_datetime(df1["datetime"])
print(df1)
df1.to_csv('out.csv')
# problem 2
df2 = df1.describe(include="all")
print(df2)
df2.to_csv("out2.csv")
# problem 3
df3 = df1.groupby(by=["datetime", "gender"])
df4 = df3.size().unstack()
df4 = df4.fillna(0)
print(df4)
datetime_list = df4.index
Male_number = df4["Male"]
Female_number = df4["Female"]
plt.bar(range(len(Male_number)), Male_number, label='male', fc='y')
plt.bar(range(len(Female_number)), Female_number, bottom=Male_number, label='female', tick_label=datetime_list, fc='g')
plt.legend()
plt.xlabel("datetime")
plt.ylabel("count")
plt.xticks(np.arange(8, 48, 12), ("09:00", "12:00", "15:00", "18:00"))
plt.show()
# problem 4
plt.bar(range(len(Female_number)), Female_number, label='Female', fc='b')
plt.legend()
plt.xlabel("datetime")
plt.ylabel("count")
plt.show()
print(Female_number)
m = np.sum(Female_number)
print("m = ", m)
Female_pdf = Female_number.apply(lambda x: x / m)
print(Female_pdf)
new_index = np.arange(1.00, 49.00)
counter = 0
for index in range(len(new_index)):
new_index[counter] = new_index[counter] / 48
counter += 1
print(new_index)
# another way to calculate mean
# Female_mean = []
# i = 0
# for index in range(len(Female_pdf)):
# Female_mean.append(Female_pdf[i] * new_index[i])
# i += 1
# Mean = np.sum(Female_mean)
Mean = 0
i = 0
for index in range(len(Female_pdf)):
Mean = Mean + new_index[i] * Female_pdf[i]
i += 1
print("Mean= ", Mean)
Mean_2 = 0
i = 0
for index in range(len(Female_pdf)):
Mean_2 = Mean_2 + (new_index[i]**2) * Female_pdf[i]
i += 1
print("Mean_2= ", Mean_2)
Female_variance = Female_pdf
print("new_index=", new_index)
print("Female_pfd=", Female_pdf)
print("Mean=", Mean)
j = 0
Variance = 0
for index in range(len(new_index)):
Variance = Variance + np.square(new_index[j] - Mean) * Female_pdf[j]
j += 1
Variance = np.sum(Female_variance)
print("Var =", Variance)
print("new_index[0]=", new_index[0])
Std = np.sqrt(Variance)
Cov = Std / Mean
print("cov =", Cov)
Lexis = Variance / Mean
print("Lexis =", Lexis)
Ske = 0
k = 0
for index in range(len(Female_pdf)):
Ske = Ske + pow(new_index[k] - Mean, 3)/48
k += 1
print(Ske)
Skewness = Ske / pow(Variance, 1.5)
print("Skewness =", Skewness)
def f(a1):
x = float(a1[0])
y = float(a1[1])
return [
x/(x+y),
(x * y)/(np.square(x + y) * (x + y + 1))+x**2/((x+y)**2)
]
a0 = [Mean, Mean_2]
result = fsolve(f, a0)
print(result)
# print(result[0], result[1])
def b(x):
float(x)
return (1/beta(result[0], result[1]))*(x**(result[0]-1))*((1-x)**(result[1]-1))
i = 10
chi = 0
while i <= 40:
chi = chi + (Female_number[i]**2)/(861*b(new_index[i]))
i += 1
chi = chi - 861
print("chi teat result =", chi)
if chi > 65:
print("the chi-test is not passed")
else:
print("the chi-test is passed")