-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathkernels.py
331 lines (288 loc) · 12 KB
/
kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as _np
from scipy.spatial import distance
class gaussianKernel(object):
'''Gaussian kernel with bandwidth sigma.'''
def __init__(self, sigma):
self.sigma = sigma
def __call__(self, x, y):
return _np.exp(-_np.linalg.norm(x-y)**2/(2*self.sigma**2))
def diff(self, x, y):
return -1/self.sigma**2*(x-y) * self(x, y)
def ddiff(self, x, y):
d = 1 if x.ndim == 0 else x.shape[0]
return (1/self.sigma**4*_np.outer(x-y, x-y) - 1/self.sigma**2 *_np.eye(d)) * self(x, y)
def laplace(self, x, y):
return (1/self.sigma**4*_np.linalg.norm(x-y)**2 - len(x)/self.sigma**2) * self(x, y)
def __repr__(self):
return 'Gaussian kernel with bandwidth sigma = %f.' % self.sigma
class gaussianKernelGeneralized(object):
'''Generalized Gaussian kernel with bandwidths sigma = (sigma_1, ..., sigma_d).'''
def __init__(self, sigma):
self.sigma = sigma
self.D = _np.diag(1/(2*sigma**2))
def __call__(self, x, y):
xy = _np.squeeze(x-y) # (d, 1) vs. (d, )
return _np.exp(-xy.T @ self.D @ xy )
def diff(self, x, y):
return -2*self.D @ (x-y) * self(x, y)
def ddiff(self, x, y):
return (_np.outer(2*self.D@(x-y), 2*self.D@(x-y)) - 2*self.D) * self(x, y)
def laplace(self, x, y):
return (_np.linalg.norm(2*self.D@(x-y))**2 - 2*_np.trace(self.D)) * self(x, y)
def __repr__(self):
return 'Generalized Gaussian kernel with bandwidths '+_np.array_str(self.sigma)+'.'
class laplacianKernel(object):
'''Laplacian kernel with bandwidth sigma.'''
def __init__(self, sigma):
self.sigma = sigma
def __call__(self, x, y):
return _np.exp(-_np.linalg.norm(x-y)/self.sigma)
def diff(self, x, y):
return -1/self.sigma*(x - y) / _np.linalg.norm(x-y) * self(x, y)
def ddiff(self, x, y):
# TODO: check x \ne y
n_xy = _np.linalg.norm(x-y)
return ( (1/(self.sigma**2*n_xy**2) + 1/(self.sigma*n_xy**3)) * _np.outer(x-y, x-y) - 1/(self.sigma*n_xy)*_np.eye(x.shape[0]) ) * self(x, y)
def laplace(self, x, y):
# TODO: check x \ne y
n_xy = _np.linalg.norm(x-y)
return ( 1/self.sigma**2 + (1-len(x))/(self.sigma*n_xy)) * self(x, y)
def __repr__(self):
return 'Laplacian kernel with bandwidth sigma = %f.' % self.sigma
class polynomialKernel(object):
'''Polynomial kernel with degree p and inhomogeneity c.'''
def __init__(self, p, c=1):
self.p = p
self.c = c
def __call__(self, x, y):
if x.ndim == 0:
return (self.c + x * y)**self.p
return (self.c + x.T @ y)**self.p
def diff(self, x, y):
if x.ndim == 0:
return self.p*(self.c + x * y)**(self.p-1)*y;
return self.p*(self.c + x.T @ y)**(self.p-1)*y;
def ddiff(self, x, y):
if x.ndim == 0:
return self.p*(self.p-1)*(self.c + x.T * y)**(self.p-2) * _np.outer(y, y)
return self.p*(self.p-1)*(self.c + x.T @ y)**(self.p-2) * _np.outer(y, y)
def laplace(self, x, y):
if x.ndim == 0:
self.p*(self.p-1)*(self.c + x.T * y)**(self.p-2) * _np.linalg.norm(y)**2
return self.p*(self.p-1)*(self.c + x.T @ y)**(self.p-2) * _np.linalg.norm(y)**2
def __repr__(self):
return 'Polynomial kernel with degree p = %f and inhomogeneity c = %f.' % (self.p, self.c)
class periodicKernel1D(object):
'''One-dimensional periodic kernel with frequency p and bandwidth sigma.'''
def __init__(self, p, sigma):
self.p = p
self.sigma = sigma
def __call__(self, x, y):
return _np.exp(-2*_np.sin((x-y)/self.p)**2/self.sigma**2)
def diff(self, x, y):
s = _np.zeros((1,))
s[0] = -4*_np.sin((x-y)/self.p)*_np.cos((x-y)/self.p)/(self.sigma**2*self.p) * self(x, y)
return s
def ddiff(self, x, y):
s = _np.zeros((1, 1))
s[0, 0] = -(4*(4*_np.cos((x-y)/self.p)**4 + 2*_np.cos((x-y)/self.p)**2*self.sigma**2 - 4*_np.cos((x-y)/self.p)**2 - self.sigma**2))/(self.sigma**4*self.p**2) * self(x, y)
return s
def __repr__(self):
return 'One-dimensional periodic kernel with frequency p = %f and bandwidth sigma = %f.' % (self.p, self.sigma)
class stringKernel(object):
'''
String kernel implementation based on Marianna Madry's C++ code, see
https://github.com/mmadry/string_kernel.
'''
def __init__(self, kn = 2, l = 0.9):
self._kn = kn # level of subsequence matching
self._l = l # decay factor
def __call__(self, x, y):
return self.evaluate(x, y) / _np.sqrt(self.evaluate(x, x)*self.evaluate(y, y))
def __repr__(self):
return 'String kernel.'
def evaluate(self, x, y):
'''Unnormalized string kernel evaluation.'''
lx = len(x)
ly = len(y)
Kd = _np.zeros([2, lx+1, ly+1])
# dynamic programming
for i in range(2):
Kd[i, :, :] = (i + 1) % 2
# calculate Kd and Kdd
for i in range(1, self._kn):
# set the Kd to zero for those lengths of s and t where s (or t) has exactly length i-1 and t (or s)
# has length >= i-1. L-shaped upside down matrix
for j in range(i - 1, lx):
Kd[i % 2, j, i - 1] = 0
for j in range(i - 1, ly):
Kd[i % 2, i - 1, j] = 0
for j in range(i, lx):
Kdd = 0
for m in range(i, ly):
if x[j - 1] != y[m - 1]:
Kdd = self._l * Kdd
else:
Kdd = self._l * (Kdd + self._l * Kd[(i + 1) % 2, j - 1, m - 1])
Kd[i % 2, j, m] = self._l * Kd[i % 2, j - 1, m] + Kdd
# calculate value of kernel function evaluation
s = 0
for i in range(self._kn, len(x) + 1):
for j in range(self._kn, len(y)+1):
if x[i - 1] == y[j - 1]:
s += self._l**2 * Kd[(self._kn - 1) % 2, i - 1, j - 1]
return s
class productKernel(object):
'''Product of one-dimensional kernels, i.e., k(x) = k(x_1) ... k(x_d).'''
def __init__(self, k):
self.k = k
self.d = len(k)
def __call__(self, x, y):
s = 1
for i in range(self.d):
s *= self.k[i](x[i], y[i])
return s
def diff(self, x, y):
ds = self(x, y) * _np.ones((self.d, 1))
for i in range(self.d):
ds[i] *= self.k[i].diff(x[i], y[i]) / self.k[i](x[i], y[i])
return ds
def ddiff(self, x, y):
dds = self(x, y) * _np.ones((self.d, self.d))
for i in range(self.d):
for j in range(i+1):
if i == j:
dds[i, j] *= self.k[i].ddiff(x[i], y[i]) / self.k[i](x[i], y[i])
else:
dds[i, j] *= self.k[i].diff(x[i], y[i]) / self.k[i](x[i], y[i]) * self.k[j].diff(x[j], y[j]) / self.k[j](x[j], y[j])
dds[j, i] = dds[i, j]
return dds
def laplace(self, x, y):
s = self(x, y)
ls = 0
for i in range(self.d):
ls += s * self.k[i].ddiff(x[i], y[i])[0, 0] / self.k[i](x[i], y[i])
return ls
def __repr__(self):
return 'Product kernel with ' + str(self.k) + '.'
def gramian(X, k):
'''Compute Gram matrix for training data X with kernel k.'''
name = k.__class__.__name__
if name == 'gaussianKernel':
return _np.exp(-distance.squareform(distance.pdist(X.T, 'sqeuclidean'))/(2*k.sigma**2))
elif name == 'laplacianKernel':
return _np.exp(-distance.squareform(distance.pdist(X.T, 'euclidean'))/k.sigma)
elif name == 'polynomialKernel':
return (k.c + X.T @ X)**k.p
elif name == 'stringKernel':
n = len(X)
# compute weights for normalization
d = _np.zeros(n)
for i in range(n):
d[i] = k.evaluate(X[i], X[i])
# compute Gram matrix
G = _np.ones([n, n]) # diagonal automatically set to 1
for i in range(n):
for j in range(i):
G[i, j] = k.evaluate(X[i], X[j]) / _np.sqrt(d[i]*d[j])
G[j, i] = G[i, j]
return G
else:
#print('User-defined kernel.')
if isinstance(X, list): # e.g., for strings
n = len(X)
G = _np.zeros([n, n])
for i in range(n):
for j in range(i+1):
G[i, j] = k(X[i], X[j])
G[j, i] = G[i, j]
else:
n = X.shape[1]
G = _np.zeros([n, n])
for i in range(n):
for j in range(i+1):
G[i, j] = k(X[:, i], X[:, j])
G[j, i] = G[i, j]
return G
def gramian2(X, Y, k):
'''Compute Gram matrix for training data X and Y with kernel k.'''
name = k.__class__.__name__
if name == 'gaussianKernel':
#print('Gaussian kernel with sigma = %f.' % k.sigma)
return _np.exp(-distance.cdist(X.T, Y.T, 'sqeuclidean')/(2*k.sigma**2))
elif name == 'laplacianKernel':
#print('Laplacian kernel with sigma = %f.' % k.sigma)
return _np.exp(-distance.cdist(X.T, Y.T, 'euclidean')/k.sigma)
elif name == 'polynomialKernel':
#print('Polynomial kernel with degree = %f and c = %f.' % (k.p, k.c))
return (k.c + X.T@Y)**k.p
elif name == 'stringKernel':
m = len(X)
n = len(Y)
dx = _np.zeros((m,))
dy = _np.zeros((n,))
for i in range(m):
dx[i] = k.evaluate(X[i], X[i])
for j in range(n):
dy[j] = k.evaluate(Y[j], Y[j])
G = _np.zeros([m, n])
for i in range(m):
for j in range(n):
G[i, j] = k.evaluate(X[i], Y[j]) / _np.sqrt(dx[i]*dy[j])
return G
else:
# print('User-defined kernel.')
if isinstance(X, list): # e.g., for strings
m = len(X)
n = len(Y)
G = _np.zeros([m, n])
for i in range(m):
for j in range(n):
G[i, j] = k(X[i], Y[j])
else:
m = X.shape[1]
n = Y.shape[1]
G = _np.zeros([m, n])
for i in range(m):
for j in range(n):
G[i, j] = k(X[:, i], Y[:, j])
return G
class densityEstimate(object):
'''Kernel density estimation using the Gaussian kernel.'''
def __init__(self, X, k, beta=1):
if k.__class__.__name__ != 'gaussianKernel':
print('Error: Only implemented for Gaussian kernel.')
return
self.X = X # points for density estimation
self.k = k # kernel
self.d, self.n = X.shape # dimension and number of data points
self.c = 1/_np.sqrt(2*_np.pi*k.sigma**2)**self.d # normalization constant
self.beta = beta # inverse temperature, for MD applications
def rho(self, x):
G2 = gramian2(x, self.X, self.k)
return self.c/self.n * G2.sum(axis=1, keepdims=True).T
def V(self, x):
return -_np.log(self.rho(x))/self.beta
def gradV(self, x):
G2 = gramian2(x, self.X, self.k)
m = x.shape[1]
y = _np.zeros_like(x)
for i in range(m):
for j in range(self.n):
y[:, i] = y[:, i] + (x[:, i] - self.X[:, j])*G2[i, j]
y[:, i] = 1/(self.beta*self.rho(x[:, i, None])) * self.c/(self.n * self.k.sigma**2)*y[:, i]
return y
# def rho(self, x):
# y = 0
# for i in range(self.n):
# y = y + self.k(x, self.X[:, i])
# return self.c/self.n * y
# def V(self, x):
# return -1/self.beta * _np.log(self.rho(x))
# def gradV(self, x):
# y = _np.zeros((self.d,))
# for i in range(self.n):
# y = y + self.k.diff(x, self.X[:, i])
# return -1/(self.beta*self.rho(x)) * self.c/self.n * y