-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnode.R
137 lines (121 loc) · 4.45 KB
/
node.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
needs(dplyr)
needs(rdwd)
needs(dwdradar)
needs(sp)
needs(raster)
needs(rgdal)
needs(RCurl)
# TODO implement choosing the radar option depending on input
attach(input[[1]])
rw_base <- paste(dwdUrl,radarProduct,sep="")
# https://bookdown.org/brry/rdwd/use-case-recent-hourly-radar-files.html
# radolan see https://www.dwd.de/DE/leistungen/radolan/produktuebersicht/radolan_produktuebersicht_pdf.pdf?__blob=publicationFile&v=7
rw_urls <- indexFTP(base=rw_base, dir=tempdir(), folder="", quiet=TRUE)
rw_file <- dataDWD(rw_urls[length(rw_urls)], base=rw_base, joinbf=TRUE, dir=tempdir(), read=FALSE, quiet=TRUE, dbin=TRUE)
# data & reproject
rw_orig <- dwdradar::readRadarFile(rw_file)
# flip RY
if( radarProduct == "ry" ) {
ras <- raster(rw_orig$dat)
flipped <- flip(ras, "y")
rw_proj <- projectRasterDWD(flipped, extent="radolan", quiet = TRUE)
} else {
rw_proj <- projectRasterDWD(raster::raster(rw_orig$dat), extent="radolan", quiet=TRUE)
}
# reclassify
# replace < 0 and 0 with NA, so they're no part of the final product
rw_proj[rw_proj == 0] <- NA
rw_proj[rw_proj < 0] <- NA
# classification
# statistics about data
sum = summary(rw_proj)
if( classification == "quartiles" ) {
reclass = c(sum[1],sum[2],1, sum[2],sum[3],2, sum[3],sum[4],3, sum[4],sum[5],4)
}
# max is now 10000 TODO if/else decision? how to pass upper margin
if( classification == "dwd" ) {
if( radarProduct == "rw") {
# unit: 1/10 mm/h, thus *10 for mm/h values (breaks have been devided by 10)
reclass = c(0,0.25,1, 0.25,1,2, 1,5,3, 5,10000,4)
}
if( radarProduct == "ry") {
# unit: 1/100 mm/5min, thus *100 *2 for mm/10min (breaks /100 *2)
reclass = c(0,0.01,1, 0.01,0.034,2, 0.034,0.166,3, 0.166,10000,4)
}
if( radarProduct == "sf") {
# unit: 1/10 mm/d, thus *10 /24 for mm/h (breaks /10 *24)
reclass = c(0,6,1, 6,24,2, 24,120,3, 120,10000,4)
}
}
# build matrix
reclass_m = matrix(reclass,
ncol = 3,
byrow = TRUE)
# reclass
rw_proj_class = reclassify(rw_proj, reclass_m)
# polygon conversion, no python, takes much longer
# pol = rasterToPolygons(rw_proj_class, n = 4, na.rm = TRUE, dissolve = TRUE)
# convert using python
# different approach, see https://johnbaumgartner.wordpress.com/2012/07/26/getting-rasters-into-shape-from-r/
# Define the function
gdal_polygonizeR <- function(x, outshape=NULL, gdalformat = 'ESRI Shapefile',
pypath=NULL, readpoly=TRUE, quiet=TRUE) {
if (isTRUE(readpoly)) require(rgdal)
if (is.null(pypath)) {
pypath <- Sys.which('gdal_polygonize.py')
}
if (!file.exists(pypath)) stop("Can't find gdal_polygonize.py on your system.")
owd <- getwd()
on.exit(setwd(owd))
setwd(dirname(pypath))
if (!is.null(outshape)) {
outshape <- sub('\\.shp$', '', outshape)
f.exists <- file.exists(paste(outshape, c('shp', 'shx', 'dbf'), sep='.'))
if (any(f.exists))
stop(sprintf('File already exists: %s',
toString(paste(outshape, c('shp', 'shx', 'dbf'),
sep='.')[f.exists])), call.=FALSE)
} else outshape <- tempfile()
if (is(x, 'Raster')) {
require(raster)
writeRaster(x, {f <- tempfile(fileext='.tif')})
rastpath <- normalizePath(f)
} else if (is.character(x)) {
rastpath <- normalizePath(x)
} else stop('x must be a file path (character string), or a Raster object.')
system2('python', args=(sprintf('"%1$s" "%2$s" -f "%3$s" "%4$s.shp"',
pypath, rastpath, gdalformat, outshape)),
# silence this
stdout = NULL, stderr = NULL)
if (isTRUE(readpoly)) {
shp <- readOGR(dirname(outshape), layer = basename(outshape), verbose=!quiet)
return(shp)
}
return(NULL)
}
if(is.na(sum[1])) {
# if no data, return 0,0 to signal no data
result <- cbind(0,0)
} else {
# polygon conversion, python, almost no calculation effort
pol <- gdal_polygonizeR(rw_proj_class)
# transfer into list for JSON readability
meta_offset <- 2
for_length <- length(pol@data[[1]])
list_length <- for_length + meta_offset
all_pol <- vector("list", list_length)
# meta
meta <- rw_orig$meta
# meta from raster as list
all_pol[[1]] <- meta
# meta from classification as matrix
all_pol[[2]] <- list(classes = reclass_m)
for(i in 1:for_length) {
class = pol@data[[1]][[i]]
# or without data.frame
coords = pol@polygons[[i]]@Polygons[[1]]@coords
l <- list(class = class, coords = coords)
all_pol[[i + meta_offset]] <- l
}
result <- all_pol
}