-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathregression-to-the-mean.Rmd
162 lines (107 loc) · 3.42 KB
/
regression-to-the-mean.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
title: 'Regression to the mean'
# subtitle: 'Nice subtitle here'
author: 'Francisco Rodríguez-Sánchez'
institute: 'https://frodriguezsanchez.net'
# date: 'today'
aspectratio: 43 # use 169 for wide format
fontsize: 12pt
output:
binb::metropolis:
keep_tex: no
incremental: yes
fig_caption: no
pandoc_args: ['--lua-filter=hideslide.lua']
urlcolor: blue
linkcolor: blue
header-includes:
- \definecolor{shadecolor}{RGB}{230,230,230}
- \setbeamercolor{frametitle}{bg=gray}
# - \logo{\includegraphics[height=2cm, width = 5cm]{logo.png}} # add logo to all slides
# - \titlegraphic{\vspace{6cm}\hfill\includegraphics[width=6cm]{logo.png}} # add logo to title slide
---
```{r knitr_setup, include=FALSE, cache=FALSE}
library('knitr')
### Chunk options ###
## Text results
opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE, size = 'tiny')
## Code decoration
opts_chunk$set(tidy = FALSE, comment = NA, highlight = TRUE, prompt = FALSE, crop = TRUE)
# ## Cache
# opts_chunk$set(cache = TRUE, cache.path = 'knitr_output/cache/')
# ## Plots
# opts_chunk$set(fig.path = 'knitr_output/figures/')
opts_chunk$set(fig.align = 'center', out.width = '90%')
### Hooks ###
## Crop plot margins
knit_hooks$set(crop = hook_pdfcrop)
## Reduce font size
## use tinycode = TRUE as chunk option to reduce code font size
# see http://stackoverflow.com/a/39961605
knit_hooks$set(tinycode = function(before, options, envir) {
if (before) return(paste0('\n \\', options$size, '\n\n'))
else return('\n\n \\normalsize \n')
})
```
## The most biodiverse sites are losing more species
WHY??
```{r}
include_graphics('images/RTM-1.png')
```
\scriptsize
\hfill Mazalla & Diekmann 2022
## Most biodiverse sites are losing more species. Why?
- Stronger competition
- Humans destroying most species-rich sites
- Establishment of new species favoured in poor sites
. . .
- No ecological cause, but stochastic variation (**regression to the mean**)
## A simulation for 100 sites
:::::::::::::: {.columns align=center}
::: {.column width='70%'}
- Simulate initial number of species:
- \scriptsize `rnorm(n = 100, mean = 15, sd = 1)`
- Simulate number of species at resurvey:
- \scriptsize `rnorm(n = 100, mean = 15, sd = 1)`
- **No real change at all!**
- (only stochastic variation)
:::
::: {.column width='30%' }
```{r out.width='100%'}
include_graphics('images/hist_spp.png')
```
:::
::::::::::::::
## Regression to the mean
Species-rich sites lose more species
Species-poor sites gain more species
Negative trend against baseline
```{r out.width='100%'}
include_graphics('images/RTM-2.png')
```
\scriptsize
\hfill Mazalla & Diekmann 2022
---
Whenever two sets of measurements are not perfectly correlated
there will be regression towards the mean
```{r}
set.seed(8)
dat <- data.frame(site = 1:100,
sp1 = rnorm(100, 5, 1)) |>
dplyr::mutate(sp2 = 2 + 0.5*sp1 + rnorm(100, 0, 0.3))
library(ggplot2)
ggplot(dat) +
aes(sp1, sp2) +
geom_point() +
geom_abline(intercept = 0, slope = 1) +
geom_smooth(method = 'lm') +
coord_cartesian(xlim = c(2, 8), ylim = c(2, 8)) +
theme_minimal(base_size = 18) +
labs(x = 'Initial', y = 'Resurvey', title = 'Number of species')
```
## What to do?
- Model outcome ~ baseline
- If modelling Change, include baseline as predictor
## To learn more
- [Mazalla & Diekmann 2022](https://doi.org/10.1111/jvs.13117)
- [Kelly & Price 2005](https://doi.org/10.1086/497402)