-
Notifications
You must be signed in to change notification settings - Fork 0
/
val.py
70 lines (50 loc) · 2.14 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
from pathlib import Path
from typing import Dict, List
import oyaml as yaml # type: ignore
from pytorch_lightning import Trainer # type: ignore
from pytorch_lightning.callbacks import (Callback, # type: ignore
LearningRateMonitor, ModelCheckpoint)
from datasets import get_datamodule
from modules.module import Module
from modules.networks import get_network
from callbacks import get_visualizers, get_postprocessors, VisualizerCallback, ConfigCallback, PostprocessorCallback
def parse_args() -> Dict[str, str]:
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=Path, required=True, help='Path to configuration file (.yaml).')
parser.add_argument('--export', type=Path, required=True, help='Path to export directory.')
parser.add_argument('--ckpt', type=Path, required=True, default=None, help='Path to checkpoint file')
args = vars(parser.parse_args())
return args
def load_config(path: Path) -> Dict:
with open(path) as f:
cfg = yaml.safe_load(f)
return cfg
def create_callbacks(cfg: Dict) -> List[Callback]:
callbacks = []
# ---- Fixed callbacks ----
config_callback = ConfigCallback(cfg)
callbacks.append(config_callback)
# ---- Callbacks defined in config ----
visualizer_callback = VisualizerCallback(get_visualizers(cfg))
callbacks.append(visualizer_callback)
postprocessor_callback = PostprocessorCallback(get_postprocessors(cfg))
callbacks.append(postprocessor_callback)
return callbacks
def main():
args = parse_args()
cfg = load_config(args['config']) # type: ignore
datamodule = get_datamodule(cfg)
network = get_network(cfg)
module = Module(network, lr=cfg['train']['lr'], w_decay=cfg['train']['weight_decay'], warm_up_epochs=cfg['train']['warm_up_epochs'])
module.load_model(args['ckpt']) # type: ignore
# Setup trainer
trainer = Trainer(
default_root_dir=args['export'],
accelerator=cfg['train']['accelerator'],
devices=cfg['train']['devices'],
benchmark=cfg['train']['benchmark'],
callbacks=create_callbacks(cfg))
trainer.validate(module, datamodule)
if __name__ == '__main__':
main()