-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_download_and_load_cptac.py
41 lines (29 loc) · 1.53 KB
/
test_download_and_load_cptac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# tests/test_download_cptac.py
from coderdata.download.downloader import download
from coderdata.load.loader import DatasetLoader
import os
import glob
import pandas as pd
def test_download_data_cptac():
#CPTAC
download('cptac')
cptac_copy_number = glob.glob('cptac_copy_number*')
assert len(cptac_copy_number) > 0, "File cptac_copy_number does not exist."
cptac_proteomics = glob.glob('cptac_proteomics*')
assert len(cptac_proteomics) > 0, "File cptac_proteomics does not exist."
cptac_samples = glob.glob('cptac_samples*')
assert len(cptac_samples) > 0, "File cptac_samples does not exist."
cptac_mutations = glob.glob('cptac_mutations*')
assert len(cptac_mutations) > 0, "File cptac_mutations does not exist."
cptac_transcriptomics = glob.glob('cptac_transcriptomics*')
assert len(cptac_transcriptomics) > 0, "File cptac_transcriptomics does not exist."
dataset_type = 'cptac'
expected_data_types = ['mutations', 'samples', 'transcriptomics','proteomics','copy_number']
# Initialize DatasetLoader with the temporary directory
loader = DatasetLoader(dataset_type)
# Check if the correct datasets are loaded
for data_type in expected_data_types:
assert hasattr(loader, data_type), f"{data_type} dataset not loaded for {dataset_type}"
loaded_data = getattr(loader, data_type)
assert isinstance(loaded_data, pd.DataFrame), f"{data_type} is not a DataFrame"
assert not loaded_data.empty, f"{data_type} DataFrame is empty"