-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmutate_conmap_for_single_EC.py
75 lines (53 loc) · 2.2 KB
/
mutate_conmap_for_single_EC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import torch
import torch.nn as nn
import torchvision
from tqdm import tqdm
from pathlib import Path
def read_masked_fasta(fasta_file):
ret = {}
with open(fasta_file, 'r') as f:
for line in f:
if line.startswith('>'):
id = line.strip()[1:]
ret[id] = ''
else:
ret[id] += line.strip()
return ret
def mask_and_embed_contact_map(contact_map, masked_fasta, model, device):
masked_fasta = masked_fasta.replace('<mask>', '*')
masked_contact_map = contact_map.copy()
masked_indices = [i for i, c in enumerate(masked_fasta) if c == 'X']
masked_contact_map[masked_indices, :] = 0
masked_contact_map[:, masked_indices] = 0
cmap1 = np.array([masked_contact_map, masked_contact_map, masked_contact_map])
with torch.no_grad():
emb = model(torch.tensor(cmap1).unsqueeze(0).to(device, dtype=torch.float32)).cpu().squeeze(0)
return masked_contact_map, emb
def main(args):
print(args)
emb_dir = Path('data/resnet_data')
conmap_dir = Path('data/contact_maps')
fasta_dict = read_masked_fasta(args.fasta)
prot_ids = list(fasta_dict.keys())
model = torchvision.models.get_model(args.emb_model, weights=args.emb_weight)
model.fc = nn.Identity()
model = model.eval().to(args.device)
for prot_id in tqdm(prot_ids):
masked_fasta = fasta_dict[prot_id]
ori_prot_id = prot_id.split('_')[0]
contact_map = np.load(conmap_dir / f'{ori_prot_id}.npy')
masked_contact_map, emb = mask_and_embed_contact_map(contact_map, masked_fasta, model, args.device)
torch.save(emb, emb_dir / f'{prot_id}.pt')
np.save(conmap_dir / f'{prot_id}.npy', masked_contact_map)
def parse_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--fasta', type=Path, required=True, help='Mutated fasta file')
parser.add_argument('--emb-model', type=str, default='resnet50')
parser.add_argument('--emb-weight', type=str, default='IMAGENET1K_V2')
parser.add_argument('--device', type=str, default='cuda')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
main(args)