diff --git a/docs/models/model1/model1.tex b/docs/models/model1/model1.tex index 6356546..12c4e0d 100755 --- a/docs/models/model1/model1.tex +++ b/docs/models/model1/model1.tex @@ -17,12 +17,17 @@ \newcommand{\yvec}{\overline{y}} \newcommand{\Yvec}{\overline{Y}} \newcommand{\Vvec}{\overline{V}} +\newcommand{\Rvec}{\overline{R}} \newcommand{\Gvec}{\overline{G}} \newcommand{\svec}{\overline{s}} \newcommand{\Tvec}{\overline{T}} +\newcommand{\Lvec}{\overline{L}} \newcommand{\vvec}{\overline{v}} +\newcommand{\nhat}{\hat{n}} +\newcommand{\rhvec}{\overline{\rho}} \newcommand{\Dmat}{\overline{\overline{D}}} \newcommand{\Rmat}{\overline{\overline{R}}} +\newcommand{\Omat}{\overline{\overline{1}}} \newcommand{\Imat}{\overline{\overline{I}}} \newcommand{\Hmat}{\overline{\overline{H}}} \newcommand{\Lag}{\mathcal{L}} @@ -539,13 +544,13 @@ \section{Ellipsoidal interactions} \end{eqnarray*} Similarly, the second derivatives are of the form \begin{eqnarray*} -\nabla_{\xvec}\nabla_{\xvec} \Phi & = & 2\Imat+4\sigma_x\left[(\xvec-\xvec_0)^T\cdot\Rmat_x^T\cdot\Dmat_x +\nabla_{\xvec}\nabla_{\xvec} \Phi & = & 2\Omat+4\sigma_x\left[(\xvec-\xvec_0)^T\cdot\Rmat_x^T\cdot\Dmat_x \cdot\Rmat_x\right]\left[\Rmat_x^T\cdot\Dmat_x\cdot\Rmat_x\cdot(\xvec-\xvec_0)\right] \\ & + & 2\sigma_x\left[g_x(\xvec)+\theta_x\right]\Rmat_x^T\cdot\Dmat_x\cdot\Rmat_x \\ -\nabla_{\yvec}\nabla_{\yvec} \Phi & = & 2\Imat+4\sigma_y\left[(\yvec-\yvec_0)^T\cdot\Rmat_y^T\cdot\Dmat_y +\nabla_{\yvec}\nabla_{\yvec} \Phi & = & 2\Omat+4\sigma_y\left[(\yvec-\yvec_0)^T\cdot\Rmat_y^T\cdot\Dmat_y \cdot\Rmat_y\right]\left[\Rmat_y^T\cdot\Dmat_y\cdot\Rmat_y\cdot(\yvec-\yvec_0)\right] \\ & + & 2\sigma_y\left[g_y(\yvec)+\theta_x\right]\Rmat_y^T\cdot\Dmat_y\cdot\Rmat_x \\ -\nabla_{\xvec}\nabla_{\yvec} \Phi & = & -\Imat +\nabla_{\xvec}\nabla_{\yvec} \Phi & = & -\Omat \end{eqnarray*} Defining the vectors @@ -618,7 +623,7 @@ \section{Ellipsoidal interactions} \section{Two-Site Model for Filament Segment} A two-site model designed to represent a segment of filamentous fungi consists -of two spheres that are held a fixed distance apart and are chosen to represent +of two spheres that are held at a fixed distance apart and are chosen to represent the hydrodynamic drag on the on the segment as forces from other segments push it around. Each sphere is subject to a force, $\fvec_1$, $\fvec_2$, resulting in a translational and rotational motion of the segment. For freely interacting @@ -632,107 +637,106 @@ \section{Two-Site Model for Filament Segment} \] The $3\times 3$ matrices $\Dmat_{ij}$ are diffusion matrices for hydrodynamically interacting spheres. The details of these matrices can be found in Rotne and -Prager\cite{RP}. The vectors $\vvec_1$ and $\vvec_2$ represent the represent the +Prager\cite{RP}. The vectors $\vvec_1$ and $\vvec_2$ are the velocities of particles 1 and 2 that represent the filament segment. -For our purposes, it is more convenient to express the equations of motion of the -system in terms of net force and torque on the particle pair. To simplify this, we -choose the two particles, separated by a distance $h$ to lie on the $x$-axis at -positions $\rvec_1 = (h/2,0,0)$ and $\rvec_2 = (-h/2,0,0)$. The more general case -can be derived by an appropriate rotation of the system. The torque $\Tvec$ and -net force $\Fvec$ on the system can be written in terms of the forces $\fvec_1$ -and $\fvec_2$ and the positions $\rvec_1$ and $\rvec_2$ as -\begin{eqnarray*} -\Tvec & = & \rvec_1\times\fvec_1 + \rvec_2\times\fvec_2 \\ -\Fvec & = & \fvec_1 + \fvec_2 -\end{eqnarray*} -Breaking these up into individual components gives the equations (for particles -located at $\rvec_1$ and $\rvec_2$) -\begin{eqnarray*} -T_x & = & 0 \\ -T_y & = & \frac{h}{2}(f_{2z}-f_{1z}) \\ -T_z & = & \frac{h}{2}(f_{1y}-f_{2y}) \\ -F_x & = & f_{1x} + f_{2x} \\ -F_y & = & f_{1y} + f_{2y} \\ -F_z & = & f_{1z} + f_{2z} -\end{eqnarray*} -The equation for $F_x$ is actually a bit more complicated. The two particles -cannot move relative to each other so an additional constraint would be -\[ -f_{1x}-f_{2x} = 0 -\] -indicating that there is no force pushing the two particles together. This could -be considered as the result of a constraint force that acts to keep the two particles -at a fixed distance. If the original $x$ components of the force acting on the two -particles are considered as $f'_{1x}$ and $f'_{2x}$ and $F_x = f'_{1x} + f'_{2x}$ -then it is possible to use this value of $F_x$ and the two equations involving -$f_{1x}$ and $f_{2x}$ to solve for $f_{1x}$ and $f_{2x}$. - -The equations for $\Tvec$ and $\Fvec$ can be inverted to solve for $\fvec_1$ and -$\fvec_2$ in terms of $\Tvec$ and $\Fvec$. Writing this as a matrix equation gives -\[ -\left[\begin{array}{c}f_{1x} \\ f_{1y} \\ f_{1z} \\ f_{2x} \\ f_{2y} \\ f_{2z} - \end{array}\right] = -\left[\begin{array}{cccccc} -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ -0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{h} \\ -0 & 0 & \frac{1}{2} & 0 & -\frac{1}{h} & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ -0 & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{h} \\ -0 & 0 & \frac{1}{2} & 0 &\frac{1}{h} & 0 -\end{array}\right]\cdot -\left[\begin{array}{c} F_x \\ F_y \\ F_z \\ T_x \\ T_y \\ T_z -\end{array}\right] -\] - -It is also useful to decompose the velocities $\vvec_1$ and $vvec_2$ into a velocity -of the center of mass, $\Vvec$, and an angular velocity, $\omvec$. The center of mass -velocity is given by the relation -\[ -\Vvec = \frac{1}{2}(\vvec_1+\vvec_2) -\] -The angular velocity must satisfy the relations -\[ -(\vvec_1-\Vvec) = \omvec\times\rvec_1 -\] -Since $\rvec_2=-\rvec_1$ it follows that $\vvec_1-\Vvec=-(\vvec_2-\Vvec)$. This is -is equivalent to saying the relative motion of particles 1 and 2 is zero, which is -required if the particles remain separated by a fixed distance. Using the -coordinates for $\rvec_1$ and $\rvec_2$ as above, the components of $\omvec$ can be -written as -\begin{eqnarray*} -v_{1x}-V_x & = & 0 \\ -v_{1y}-V_y & = & \frac{h}{2} \omega_z \\ -v_{1z}-V_z & = & -\frac{h}{2} \omega_y -\end{eqnarray*} -The equations generated by $\vvec_2$ are essentially that same as the equations -generated by $\vvec_1$. The $x$ component of $\omvec$ is indeterminate, but can be -set to 0 (the forces in this model are applied to points, so there is no torque -about the $x$ axis). These equations can be solved for $\Vvec$ and $\omvec$ to get -the matrix equations -\[ -\left[\begin{array}{c}V_x \\ V_y \\ V_z \\ \omega_x \\ \omega_y \\ \omega_z - \end{array}\right] = -\left[\begin{array}{cccccc} -\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ -0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ -0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & -\frac{1}{h} & 0 & 0 & \frac{1}{h} \\ -0 & \frac{1}{h} & 0 & 0 &-\frac{1}{h} & 0 -\end{array}\right]\cdot -\left[\begin{array}{c} v_{1x} \\ v_{1y} \\ v_{1z} \\ v_{2x} \\ v_{2y} \\ v_{2z} -\end{array}\right] -\] +%For our purposes, it is more convenient to express the equations of motion of the +%system in terms of net force and torque on the particle pair. To simplify this, we +%choose the two particles, separated by a distance $h$ to lie on the $x$-axis at +%positions $\rvec_1 = (h/2,0,0)$ and $\rvec_2 = (-h/2,0,0)$. The more general case +%can be derived by an appropriate rotation of the system. The torque $\Tvec$ and +%net force $\Fvec$ on the system can be written in terms of the forces $\fvec_1$ +%and $\fvec_2$ and the positions $\rvec_1$ and $\rvec_2$ as +%\begin{eqnarray*} +%\Tvec & = & \rvec_1\times\fvec_1 + \rvec_2\times\fvec_2 \\ +%\Fvec & = & \fvec_1 + \fvec_2 +%\end{eqnarray*} +%Breaking these up into individual components gives the equations (for particles +%located at $\rvec_1$ and $\rvec_2$) +%\begin{eqnarray*} +%T_x & = & 0 \\ +%T_y & = & \frac{h}{2}(f_{2z}-f_{1z}) \\ +%T_z & = & \frac{h}{2}(f_{1y}-f_{2y}) \\ +%F_x & = & f_{1x} + f_{2x} \\ +%F_y & = & f_{1y} + f_{2y} \\ +%F_z & = & f_{1z} + f_{2z} +%\end{eqnarray*} +%The equation for $F_x$ is actually a bit more complicated. The two particles +%cannot move relative to each other so an additional constraint would be +%\[ +%f_{1x}-f_{2x} = 0 +%\] +%indicating that there is no force pushing the two particles together. This could +%be considered as the result of a constraint force that acts to keep the two particles +%at a fixed distance. If the original $x$ components of the force acting on the two +%particles are considered as $f'_{1x}$ and $f'_{2x}$ and $F_x = f'_{1x} + f'_{2x}$ +%then it is possible to use this value of $F_x$ and the two equations involving +%$f_{1x}$ and $f_{2x}$ to solve for $f_{1x}$ and $f_{2x}$. +% +%The equations for $\Tvec$ and $\Fvec$ can be inverted to solve for $\fvec_1$ and +%$\fvec_2$ in terms of $\Tvec$ and $\Fvec$. Writing this as a matrix equation gives +%\[ +%\left[\begin{array}{c}f_{1x} \\ f_{1y} \\ f_{1z} \\ f_{2x} \\ f_{2y} \\ f_{2z} +% \end{array}\right] = +%\left[\begin{array}{cccccc} +%\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ +%0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{h} \\ +%0 & 0 & \frac{1}{2} & 0 & -\frac{1}{h} & 0 \\ +%\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ +%0 & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{h} \\ +%0 & 0 & \frac{1}{2} & 0 &\frac{1}{h} & 0 +%\end{array}\right]\cdot +%\left[\begin{array}{c} F_x \\ F_y \\ F_z \\ T_x \\ T_y \\ T_z +%\end{array}\right] +%\] +% +%It is also useful to decompose the velocities $\vvec_1$ and $vvec_2$ into a velocity +%of the center of mass, $\Vvec$, and an angular velocity, $\omvec$. The center of mass +%velocity is given by the relation +%\[ +%\Vvec = \frac{1}{2}(\vvec_1+\vvec_2) +%\] +%The angular velocity must satisfy the relations +%\[ +%(\vvec_1-\Vvec) = \omvec\times\rvec_1 +%\] +%Since $\rvec_2=-\rvec_1$ it follows that $\vvec_1-\Vvec=-(\vvec_2-\Vvec)$. This is +%is equivalent to saying the relative motion of particles 1 and 2 is zero, which is +%required if the particles remain separated by a fixed distance. Using the +%coordinates for $\rvec_1$ and $\rvec_2$ as above, the components of $\omvec$ can be +%written as +%\begin{eqnarray*} +%v_{1x}-V_x & = & 0 \\ +%v_{1y}-V_y & = & \frac{h}{2} \omega_z \\ +%v_{1z}-V_z & = & -\frac{h}{2} \omega_y +%\end{eqnarray*} +%The equations generated by $\vvec_2$ are essentially that same as the equations +%generated by $\vvec_1$. The $x$ component of $\omvec$ is indeterminate, but can be +%set to 0 (the forces in this model are applied to points, so there is no torque +%about the $x$ axis). These equations can be solved for $\Vvec$ and $\omvec$ to get +%the matrix equations +%\[ +%\left[\begin{array}{c}V_x \\ V_y \\ V_z \\ \omega_x \\ \omega_y \\ \omega_z +% \end{array}\right] = +%\left[\begin{array}{cccccc} +%\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ +%0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ +%0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ +%0 & 0 & 0 & 0 & 0 & 0 \\ +%0 & 0 & -\frac{1}{h} & 0 & 0 & \frac{1}{h} \\ +%0 & \frac{1}{h} & 0 & 0 &-\frac{1}{h} & 0 +%\end{array}\right]\cdot +%\left[\begin{array}{c} v_{1x} \\ v_{1y} \\ v_{1z} \\ v_{2x} \\ v_{2y} \\ v_{2z} +%\end{array}\right] +%\] +% -The final part of developing a complete picture of the behavior of filament -segments is to come up with complete set of formulas for the diffusion tensors. -From Rotne and Prager the diffusion tensor, the diffusion tensor for a pair of -radius $a$ is +From Rotne and Prager, the diffusion tensor for a pair of +particles of radius $a$ is \begin{eqnarray*} -\Dmat_{ii} & = & \frac{kT}{6\pi\mu a}\Imat \\ -\Dmat_{ij} & = & \frac{kT}{8\pi\mu r_{ij}^3}\left[\left(\Imat r_{ij}^2 +\rvec_{ij} -\rvec_{ij}\right) +\frac{2a^2}{r_{ij}^2}\left(\frac{1}{3}\Imat r_{ij}^2 +\Dmat_{ii} & = & \frac{kT}{6\pi\mu a}\Omat \\ +\Dmat_{ij} & = & \frac{kT}{8\pi\mu r_{ij}^3}\left[\left(\Omat r_{ij}^2 +\rvec_{ij} +\rvec_{ij}\right) +\frac{2a^2}{r_{ij}^2}\left(\frac{1}{3}\Omat r_{ij}^2 -\rvec_{ij}\rvec_{ij}\right)\right] \;\;\;\; \mbox{if}\;\; r_{ij} > 2a \\ \Dmat_{ij} & = & \frac{kT}{6\pi\mu a}\left[\left(1-\frac{9}{32}\frac{r_{ij}}{a}\right) +\frac{3}{32}\frac{\rvec_{ij}\rvec_{ij}}{ar_{ij}}\right] \;\;\;\; \mbox{if} \;\; r_{ij}<2a @@ -740,20 +744,103 @@ \section{Two-Site Model for Filament Segment} Assuming that the two particles lie at points $(h/2,0,0)$ and $(-h/2,0,0)$, the equations for the off-diagonal matrices reduce to \begin{eqnarray*} -(\Dmat_{ij})_{xx,yy} & = & \frac{kT}{8\pi\mu h^3}\left[h^2+\frac{2}{3}a^2\right] +(\Dmat_{ij})_{xx} & = & \frac{kT}{4\pi\mu h^3}\left[h^2-\frac{2}{3}a^2\right] \;\;\;\;\mbox{if}\;\;h>2a \\ -(\Dmat_{ij})_{zz} & = & \frac{kT}{4\pi\mu h^3}\left[h^2-\frac{2}{3}a^2\right] +(\Dmat_{ij})_{yy,zz} & = & \frac{kT}{8\pi\mu h^3}\left[h^2+\frac{2}{3}a^2\right] \;\;\;\;\mbox{if}\;\;h>2a \\ -(\Dmat_{ij})_{xx,yy} & = & \frac{kT}{6\pi\mu a}\left[1-\frac{9}{32}\frac{h}{a}\right] - \;\;\;\;\mbox{if}\;\;h<2a \\ -(\Dmat_{ij})_{zz} & = & \frac{kT}{6\pi\mu a}\left[1-\frac{3}{16}\frac{h}{a}\right] +(\Dmat_{ij})_{xx} & = & \frac{kT}{6\pi\mu a}\left[1-\frac{3}{16}\frac{h}{a}\right] \;\;\;\;\mbox{if}\;\;h<2a \\ +(\Dmat_{ij})_{yy,zz} & = & \frac{kT}{6\pi\mu a}\left[1-\frac{9}{32}\frac{h}{a}\right] + \;\;\;\;\mbox{if}\;\;h<2a \end{eqnarray*} All other matrix elements are zero in this orientation. Note that these matrix -elements are continuous at the contact value of $h=2a$. The only remaining detail +elements are continuous at the contact value of $h=2a$. This formula can be used to +calculate the diffusion tensor in the frame of reference where the cylinder is located +along the $x$ axis and then the tensor can be rotated back to the actual orientation. + +The only remaining detail is to choose a relation between the radius $a$ of the two particles representing the ends of the segment, the separation distance $h$ between the particles and -the dimensions of the cylinder representing the fungi segment. +the dimensions of the cylinder representing the fungi segment. For these simulations +we choose the radius $a$ so that the total area of the two spheres is equal to the +area of the area of the cylinder represented by the segment. + +The simulation code actually uses the translational velocity of the center of mass and +the angular rotational velocity, $\omvec$, of the cylinder to update the position of the system. +The two fictitious particles used to calculate the hydrodynamic drag are assumed to +have the same mass, which leads immediately to the relation +\[ +\Vvec = \frac{\vvec_1+\vvec_2}{2} +\] +between the center of mass velocity $\Vvec$ and the individual particle velocities. +The angular velocity is more complicated. The relationship between angular velocity +and the velocity of the individual particles in the cylinder is given by +\[ +\Imat\cdot\omvec = \Lvec +\] +where $\Lvec$ is the angular momentum +\begin{eqnarray*} +\Lvec & = & \sum_i m\rvec_i\times\vvec_i\\ +& = & \frac{m}{2}\rvec_{12}\times(\vvec_1-\vvec_2) +\end{eqnarray*} +and $\Imat$ is the moment of inertia tensor +\begin{eqnarray*} +\Imat & = & \sum_i m (\Omat r_i^2-\rvec_i\rvec_i) \\ +& = & \frac{m}{4}(\Omat\; 2r_{12}^2-2\rvec_{12}\rvec_{12}) \\ +& = & \frac{m}{2}(\Omat r_{12}^2-\rvec_{12}\rvec_{12}) \\ +\end{eqnarray*} +Note that in all these equations, the particles are assumed to be located at +$\pm \rvec_{12}/2$. + +If the cylinder is oriented parallel to the $x$ axis, then the moment of inertia tensor +has the simple form +\[ +\Imat = \frac{mh^2}{2}\left[\begin{array}{ccc} +0 & 0 & 0\\ +0 & 1 & 0\\ +0 & 0 & 1\\ +\end{array}\right] +\] +Note that this has a zero eigenvalue so that it is not invertible. However, in this +orientation, the $x$ component of $\Lvec$ also vanishes, implying that $\omega_x$ can be +set to any value. For convenience, we set it equal to zero. The angular momentum in this +orientation is +\[ +\Lvec = \frac{mh}{2}(0,\;-v'_z,\;v'_y) +\] +where $\vvec'$ is the vector $\vvec_1-\vvec_2$ after rotating to the frame where +$\rvec_{12}$ is parallel to the $x$ axis. In this frame, the remaining two components +of $\omvec$ are given by +\begin{eqnarray*} +\omega_y & = & -v'_z/h \\ +\omega_z & = & v'_y/h +\end{eqnarray*} + +These equations have all relied on the fact that $\rvec_{12}$ is oriented along the +$x$ axis. To use these equations in practice, it is necessary to construct the rotation +that orients $\rvec_{12}$ along the $x$ axis. Assume polar coordinates with polar +angle $\phi$ and azimuthal angle $\theta$ such that $\theta = 0$ implies that a vector +is parallel to the $z$ axis and $\phi = 0$, $\theta = \pi/2$ implies that a vector is +parallel to the $x$ axis. The vector $\rvec_{12}$ is described by the coordinates +$h(\cos\phi\sin\theta,\sin\phi\sin\theta,\cos\theta)$. The matrix to rotate the $x$ axis +to this orientation is +\[ +\Rmat=\left[\begin{array}{ccc} +\cos\phi\sin\theta & -\sin\phi & -\cos\phi\cos\theta \\ +\sin\phi\sin\theta & \cos\phi & -\sin\phi\cos\theta \\ +\cos\theta & 0 & \sin\theta +\end{array}\right] +=\left[\begin{array}{ccc} +\cos\phi & -\sin\phi & 0 \\ +\sin\phi & \cos\phi & 0 \\ +0 & 0 & 1\end{array}\right] +\left[\begin{array}{ccc} +\sin\theta & 0 & -\cos\theta \\ +0 & 1 & 0 \\ +\cos\theta & 0 & \sin\theta +\end{array}\right] +\] +The inverse rotation is just the transpose of this matrix. \section{Creating a Bond List} To model filamentous fungi, it is necessary to maintain bonds between @@ -836,6 +923,76 @@ \section{Creating a Bond List} \item If there is no match, the non-bonded interaction between the two segments is evaluated \end{list} + +\section{Cylinder interactions} +Our model for interacting cylinders is based on the minimum distance between two +line segments. The segments are defined by the line joining the centers of the two +end caps for each cylinder. If these two points are defined as $\rvec_1$ and $\rvec_2$ +and the separation between them is defined as $\rhvec = \rvec_2-\rvec_1$ then the line +segment $\Rvec(\tau)$ joining the endpoints is defined as +\[ +\Rvec(\tau) = \rvec_1 +\tau\rhvec\;\;\;\;\;\;\;\mbox{for}\;\;\tau\in [0,1] +\] +For two cylinders $i$ and $j$ defined by the line segments $\Rvec_i(\tau_i)$ and +$\Rvec_j(\tau_j)$ we can find the minimum separation distance by minimizing +\begin{eqnarray*} +\chi & = & \left|\Rvec_i(\tau_i)-\Rvec_j(\tau_j)\right|^2 \\ + & = & \left|\rvec_{i1}-\rvec_{j1}\right|^2+2\tau_i(\rvec_{i1}-\rvec_{j1})\cdot\rhvec_i + -2\tau_j(\rvec_{i1}-\rvec_{j1})\cdot\rhvec_j \\ + & + & \tau_i^2\left|\rhvec_i\right|^2 + \tau_j^2\left|\rhvec_j\right|^2 + - 2\tau_i\tau_j\rhvec_i\cdot\rhvec_j +\end{eqnarray*} +subject to the constraints $0\le\tau_i\le 1$ and $0\le\tau_j\le 1$. + +Setting the gradients of $\chi$ with respect to $\tau_i$ and $\tau_j$ equal to +zero gives the coupled linear equations +\begin{eqnarray*} +-(\rvec_{i1}-\rvec_{j1})\cdot\rhvec_i & = & \tau_i\left|\rhvec_i\right|^2 + - \tau_j\rhvec_i\cdot\rhvec_j \\ +(\rvec_{i1}-\rvec_{j1})\cdot\rhvec_j & = & - \tau_i\rhvec_i\cdot\rhvec_j + + \tau_j\left|\rhvec_j\right|^2 +\end{eqnarray*} +This can easily be solved in most cases for $\tau_i$ and $\tau_j$. +After a solution is found, it is necessary to check that the $\tau_i$ and $\tau_j$ +satisfy the constraints. If they don't then the solution can be found by setting the +values of $\tau_i$ and $\tau_j$ to the limits 0 and 1 and optimizing the remaining +variable to find a minimum distance value. This may require and exhaustive search through +up to four values. + +A corner case occurs when $\rhvec_i$ and $\rhvec_j$ are parallel. In this case the +determinant vanishes and there is no unique solution. An {\em ad hoc} solution can be +found by fixing $\tau_i$ to 0 and 1 and then minimizing $\tau_j$. Based on the values +of $\tau_j$, a pair of values can be chosen the represent the minimum distance between +the line segments. + +The force between the two cylinders is some function $\Fvec(R)$ of the minimal +distance $R=|\Rvec_i(\tau_i)-\Rvec_j(\tau_j)|$ between the two cylinders. The +force must still be partitioned between the sites defining the cylinder. To do +this, we assume that $F(R)$ is generated from a potential $U(R)$. The force is +then +\[ +\nabla_{\Rvec}U(R) = \Fvec(R) +\] +If we write $\Rvec_j(\tau_j)$ as +\[ +\Rvec_i(\tau_i) = \rvec_i + \tau_i (\rvec_{i2}-\rvec_{i1}) +\] +then the gradient of $U(R)$ with respect to $\rvec_{i1}$ is +\begin{eqnarray*} +\nabla_{\rvec_{i1}}U(R) & = & \frac{\partial U}{\partial R}\nabla_{\rvec_{i1}}R\ + = \frac{\partial U}{\partial R}\frac{\Rvec}{R} (1-\tau_i) +\end{eqnarray*} +Identifying $-\partial U/\partial R$ as some function $F(R)$ gives the final +relation +\[ +\fvec_{i1} = F(R)\frac{\Rvec}{R}(1-\tau_i) +\] +for the force acting on site 1 of segment $i$. The force acting on site 2 of segment +$i$ is just +\[ +\fvec_{i2} = F(R)\frac{\Rvec}{R}\tau_j +\] +The expressions for the forces on the two sites of segment $j$ are similar. \bibliographystyle{unsrt} \bibliography{bmx} \end{document}